Suppr超能文献

超越分类学:在鱼类养殖场影响评估的背景下验证功能推断方法。

Beyond taxonomy: Validating functional inference approaches in the context of fish-farm impact assessments.

机构信息

Institute of Marine Research, Tromsø, Norway.

Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.

出版信息

Mol Ecol Resour. 2021 Oct;21(7):2264-2277. doi: 10.1111/1755-0998.13426. Epub 2021 May 28.

Abstract

Characterization of microbial assemblages via environmental DNA metabarcoding is increasingly being used in routine monitoring programs due to its sensitivity and cost-effectiveness. Several programs have recently been developed which infer functional profiles from 16S rRNA gene data using hidden-state prediction (HSP) algorithms. These might offer an economic and scalable alternative to shotgun metagenomics. To date, HSP-based methods have seen limited use for benthic marine surveys and their performance in these environments remains unevaluated. In this study, 16S rRNA metabarcoding was applied to sediment samples collected at 0 and ≥1,200 m from Norwegian salmon farms, and three metabolic inference approaches (Paprica, Picrust2 and Tax4Fun2) evaluated against metagenomics and environmental data. While metabarcoding and metagenomics recovered a comparable functional diversity, the taxonomic composition differed between approaches, with genera richness up to 20× higher for metabarcoding. Comparisons between the sensitivity (highest true positive rates) and specificity (lowest true negative rates) of HSP-based programs in detecting functions found in metagenomic data ranged from 0.52 and 0.60 to 0.76 and 0.79, respectively. However, little correlation was observed between the relative abundance of their specific functions. Functional beta-diversity of HSP-based data was strongly associated with that of metagenomics (r ≥ 0.86 for Paprica and Tax4Fun2) and responded similarly to the impact of fish farm activities. Our results demonstrate that although HSP-based metabarcoding approaches provide a slightly different functional profile than metagenomics, partly due to recovering a distinct community, they represent a cost-effective and valuable tool for characterizing and assessing the effects of fish farming on benthic ecosystems.

摘要

通过环境 DNA 宏条形码对微生物群落进行特征描述,由于其灵敏度和成本效益,越来越多地被用于常规监测计划。最近开发了几个程序,这些程序使用隐状态预测 (HSP) 算法从 16S rRNA 基因数据推断功能谱。与 shotgun 宏基因组学相比,这可能是一种经济且可扩展的替代方法。迄今为止,基于 HSP 的方法在海底海洋调查中应用有限,其在这些环境中的性能仍未得到评估。在这项研究中,16S rRNA 宏条形码应用于从挪威鲑鱼养殖场采集的 0 米和≥1200 米深的沉积物样本,并且对三种代谢推断方法(Paprica、Picrust2 和 Tax4Fun2)进行了评估,与宏基因组学和环境数据进行了比较。虽然宏条形码和宏基因组学恢复了可比的功能多样性,但方法之间的分类组成不同,宏条形码的属丰富度高达 20 倍。基于 HSP 的程序检测宏基因组数据中发现的功能的灵敏度(最高真阳性率)和特异性(最低真阴性率)之间的比较范围分别为 0.52 和 0.60 至 0.76 和 0.79。然而,观察到它们特定功能的相对丰度之间几乎没有相关性。基于 HSP 的数据的功能 beta 多样性与宏基因组学强烈相关(Paprica 和 Tax4Fun2 的 r 值≥0.86),并且对鱼类养殖活动的影响反应相似。我们的研究结果表明,尽管基于 HSP 的宏条形码方法提供的功能图谱与宏基因组学略有不同,部分原因是由于恢复了独特的群落,但它们代表了一种具有成本效益的宝贵工具,可用于描述和评估鱼类养殖对海底生态系统的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验