Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
Institute for Plant Genomics and Biotechnology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Environ Sci Technol. 2022 Aug 2;56(15):10721-10731. doi: 10.1021/acs.est.2c01867. Epub 2022 Jul 13.
6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is a dominant per- and poly-fluoroalkyl substance (PFAS) in aqueous film-forming foam (AFFF)-impacted soil. While its biotransformation mechanisms have been studied, the complex effects from plants, nutrients, and soil microbiome interactions on the fate and removal of 6:2 FTSA are poorly understood. This study systematically investigated the potential of phytoremediation for 6:2 FTSA bycoupled with bioaugmentation ofRHA1 (designated as RHA1 hereafter) under different nutrient and microbiome conditions. Hyperaccumulation of 6:2 FTSA, defined as tissue/soil concentration > 10 and high translocation factor > 3, was observed in plants. However, biotransformation of 6:2 FTSA only occurred under sulfur-limited conditions. Spiking RHA1 not only enhanced the biotransformation of 6:2 FTSA in soil but also promoted plant growth. Soil microbiome analysis uncovered as one of the dominant species in all RHA1-spiked soil. Different nutrients such as sulfur and carbon, bioaugmentation, and amendment of 6:2 FTSA caused significant changes in - microbial community structure. This study revealed the synergistic effects of phytoremediation and bioaugmentation on 6:2 FTSA removal. and highlighted that the fate of 6:2 FTSA was highly influced by the complex interactions of plants, nutrients, and soil microbiome.
6:2 氟调聚物磺酸(6:2 FTSA)是水性成膜泡沫(AFFF)污染土壤中占主导地位的全氟和多氟烷基物质(PFAS)。虽然已经研究了其生物转化机制,但植物、养分和土壤微生物组相互作用对 6:2 FTSA 的命运和去除的复杂影响仍知之甚少。本研究系统地研究了在不同养分和微生物组条件下,通过耦合 RHA1(以下简称 RHA1)生物增强,利用植物修复技术去除 6:2 FTSA 的潜力。观察到植物对 6:2 FTSA 的超积累,定义为组织/土壤浓度>10 和高迁移因子>3。然而,只有在硫限制条件下才会发生 6:2 FTSA 的生物转化。添加 RHA1 不仅增强了土壤中 6:2 FTSA 的生物转化,还促进了植物的生长。土壤微生物组分析揭示了 是所有添加 RHA1 的土壤中的主要物种之一。不同的养分,如硫和碳、生物增强和 6:2 FTSA 的添加,导致了 - 微生物群落结构的显著变化。本研究揭示了植物修复和生物增强对 6:2 FTSA 去除的协同作用,并强调了 6:2 FTSA 的命运受到植物、养分和土壤微生物组复杂相互作用的高度影响。