Dingilian Kayane K, Lippe Martina, Kubečka Jakub, Krohn Jan, Li Chenxi, Halonen Roope, Keshavarz Fatemeh, Reischl Bernhard, Kurtén Theo, Vehkamäki Hanna, Signorell Ruth, Wyslouzil Barbara E
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg2, 8093 Zürich, Switzerland.
J Phys Chem Lett. 2021 May 20;12(19):4593-4599. doi: 10.1021/acs.jpclett.1c00762. Epub 2021 May 10.
Studies of vapor phase nucleation have largely been restricted to one of two limiting cases-nucleation controlled by a substantial free energy barrier or the collisional limit where the barrier is negligible. For weakly bound systems, exploring the transition between these regimes has been an experimental challenge, and how nucleation evolves in this transition remains an open question. We overcome these limitations by combining complementary Laval expansion experiments, providing new particle formation data for carbon dioxide over a uniquely broad range of conditions. Our experimental data together with a kinetic model using rate constants from high-level quantum chemical calculations provide a comprehensive picture of new particle formation as nucleation transitions from a barrier-dominated process to the collisional limit.
由可观的自由能垒控制的成核过程,或自由能垒可忽略不计的碰撞极限情况。对于弱束缚系统,探索这两种状态之间的转变一直是一项实验挑战,而成核在这种转变过程中如何演变仍是一个悬而未决的问题。我们通过结合互补的拉瓦尔膨胀实验克服了这些限制,在独特的广泛条件范围内提供了二氧化碳新的粒子形成数据。我们的实验数据与使用来自高水平量子化学计算的速率常数的动力学模型一起,提供了一幅新粒子形成的全面图景,即成核过程从以势垒为主导的过程转变为碰撞极限。