Suppr超能文献

基于元素图谱和决策树的应用对转化型凤尾鱼产品进行分类,以评估可追溯性和原产国标签。

Classification of transformed anchovy products based on the use of element patterns and decision trees to assess traceability and country of origin labelling.

机构信息

Department of Food and Drug, University of Parma, Parma Via del Taglio, 10, Parma 43126, Italy.

Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, Pardubice CZ-532 10, Czech Republic.

出版信息

Food Chem. 2021 Oct 30;360:129790. doi: 10.1016/j.foodchem.2021.129790. Epub 2021 Apr 22.

Abstract

Quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and direct mercury analysis were used to determine the elemental composition of 180 transformed (salt-ripened) anchovies from three different fishing areas before and after packaging. To this purpose, four decision trees-based algorithms, corresponding to C5.0, classification and regression trees (CART), chi-squareautomatic interaction detection (CHAID), and quick unbiased efficient statistical tree (QUEST) were applied to the elemental datasets to find the most accurate data mining procedure to achieve the ultimate goal of fish origin prediction. Classification rules generated by the trained CHAID model optimally identified unlabelled testing bulk anchovies (93.9% F-score) by using just 6 out of 52 elements (As, K, P, Cd, Li, and Sr). The finished packaged product was better modelled by the QUEST algorithm which recognised the origin of anchovies with F-score of 97.7%, considering the information carried out by 5 elements (B, As, K. Cd, and Pd). Results obtained suggested that the traceability system in the fishery sector may be supported by simplified machine learning techniques applied to a limited but effective number of inorganic predictors of origin.

摘要

采用四级杆电感耦合等离子体质谱(Q-ICP-MS)和直接测汞法,对三种不同捕捞区经盐腌制后再包装的 180 条凤尾鱼进行元素组成分析。为此,应用基于决策树的四种算法(C5.0、分类和回归树(CART)、卡方自动交互检测(CHAID)和快速无偏有效统计树(QUEST))对元素数据集进行分析,以找到最准确的数据挖掘程序,从而达到预测鱼源的最终目标。通过使用 52 种元素中的 6 种(As、K、P、Cd、Li 和 Sr),经过训练的 CHAID 模型生成的分类规则可以最佳地识别未标记的测试散装凤尾鱼(F-分数为 93.9%)。QUEST 算法则更好地模拟了已包装产品,其考虑到 5 种元素(B、As、K、Cd 和 Pd)的信息,F-分数为 97.7%。研究结果表明,在渔业部门的可追溯性系统中,可以通过简化的机器学习技术来支持,这些技术应用于有限但有效的起源无机预测因子数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验