Carrillo-Baltodano Allan Martín, Seudre Océane, Guynes Kero, Martín-Durán José María
School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
Evodevo. 2021 May 10;12(1):5. doi: 10.1186/s13227-021-00176-z.
Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored.
Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally.
Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.
环节动物是螺旋动物门中种类多样的分节蠕虫,其胚胎表现出螺旋卵裂和多种幼虫形态。虽然大多数现代胚胎学研究集中在多毛纲(定居亚纲 + 游走亚纲)中具有不等螺旋卵裂的物种上,但最近有一些研究关注了纺锤欧文蚓,它是所有其他环节动物姐妹群的成员,因此是理解环节动物和螺旋动物进化与发育的关键谱系。然而,纺锤欧文蚓早期卵裂的时间以及导致其独特的帽状幼虫形成的详细形态发生事件在很大程度上仍未被探索。
纺锤欧文蚓进行均等螺旋卵裂,动物极的第一四分体小卵裂球略大于植物极大卵裂球。在19°C条件下,受精后约5小时(hpf)卵裂产生一个腔囊胚。原肠胚形成通过内陷进行,4小时后完成,推测的中胚层前体和成刚毛细胞在受精后10小时出现在背侧后部。此后不久,在受精后11小时,顶簇出现,随后在受精后13小时,顶器中出现第一批神经元(由elav1和突触结合蛋白-1的表达揭示),纤毛轮也出现。连接刚毛囊与各种幼虫组织的肌肉在受精后18小时左右发育,到帽状幼虫在受精后22小时完全形成时,顶器和纤毛轮中有FMRF酰胺神经元,纤毛轮形成一个纤毛轮环。随着帽状幼虫进食,其体积增大,纤毛轮通过活跃增殖而扩展。在15°C条件下,受精后约3周,当腹侧形成一个明显的幼体原基时,幼虫变得具有能力。
纺锤欧文蚓的胚胎发生与其他进行均等螺旋卵裂的环节动物相似,支持了均等卵裂与腔囊胚的形成、通过内陷进行原肠胚形成以及环节动物中摄食担轮幼虫样幼虫的形成相关。帽状幼虫的神经系统形成得比以前认为的更早且更复杂,并且从前向后发育,这可能是环节动物的祖先状态。总之,我们的研究确定了纺锤欧文蚓个体发育过程中的主要发育事件,为未来的研究定义了一个概念框架。