Suppr超能文献

理解多车道农村公路的碰撞频率与相关因素之间的关系如何变化:估计地理和时间加权回归模型。

Understanding how relationships between crash frequency and correlates vary for multilane rural highways: Estimating geographically and temporally weighted regression models.

机构信息

Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, United States.

Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, United States.

出版信息

Accid Anal Prev. 2021 Jul;157:106146. doi: 10.1016/j.aap.2021.106146. Epub 2021 May 8.

Abstract

Safety Performance Functions (SPFs) are critical tools in the management of highway safety projects. SPFs are used to predict the average number of crashes per year at a location, such as a road segment or an intersection. The Highway Safety Manual (HSM) provides default safety performance functions (SPFs), but it is recommended that states in the U.S. develop jurisdiction-specific SPFs using local crash data. To do this for the state of Tennessee, crash and road inventory data were integrated for multi-lane rural highway segments for the years 2013-2017. In addition to developing SPFs similar to those contained in the HSM, this study applied a new methodology to capture variation in crashes in both space and time. Specifically, Geographically and Temporally Weighted Regression (GTWR) models for the localization of SPFs were developed. The new methodology incorporates temporal aspects of crashes in the models because the impact of a specific variable on crash frequency may vary over time due to several reasons. Results indicate that GTWR models remarkably outperform the traditional regression models by capturing spatio-temporal heterogeneity. Most parameter estimates were found to vary substantially across space and time. In other words, the association of contributing variables with the number of crashes can vary from one region or period of time to another. This finding weakens the idea of transferring default SPFs to other states and applying a single localized SPF to all regions of a state. Enabled by growing computational power, these results emphasize the importance of accounting for spatial and temporal heterogeneity and developing highly localized SPFs. The methodology of this study can be used by researchers to follow the temporal trend and location of critical factors to identify sites for safety improvements.

摘要

安全绩效函数(SPF)是公路安全项目管理的重要工具。SPF 用于预测特定位置(如路段或交叉口)每年发生的平均事故次数。《公路安全手册》(HSM)提供了默认的安全绩效函数(SPF),但建议美国各州使用当地的事故数据开发特定于管辖范围的 SPF。为了在田纳西州做到这一点,对 2013-2017 年多车道农村公路路段的事故和道路存量数据进行了整合。除了开发类似于 HSM 中包含的 SPF 外,本研究还应用了一种新方法来捕捉事故在空间和时间上的变化。具体来说,开发了用于 SPF 本地化的地理和时间加权回归(GTWR)模型。新方法在模型中纳入了事故的时间方面,因为由于多种原因,特定变量对事故频率的影响可能随时间而变化。结果表明,GTWR 模型通过捕捉时空异质性,显著优于传统回归模型。大多数参数估计在空间和时间上都有很大的变化。换句话说,与事故数量相关的影响因素的相关性可能因地区或时间段的不同而不同。这一发现削弱了将默认 SPF 转移到其他州并将单个本地化 SPF 应用于州内所有地区的想法。由于计算能力的提高,这些结果强调了考虑空间和时间异质性并开发高度本地化 SPF 的重要性。本研究的方法可被研究人员用于跟踪关键因素的时间趋势和位置,以确定需要改进安全状况的地点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验