Suppr超能文献

生成对抗网络用于胶质母细胞瘤可确保形态学变化,并提高异柠檬酸脱氢酶突变型的诊断模型。

Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type.

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, Korea.

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul, 05505, Korea.

出版信息

Sci Rep. 2021 May 10;11(1):9912. doi: 10.1038/s41598-021-89477-w.

Abstract

Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based prediction, as a rare disease of isocitrate dehydrogenase (IDH)-mutant glioblastomas. GAN was initially trained on 500 normal brains and 110 IDH-mutant high-grade astocytomas, and paired contrast-enhanced T1-weighted and FLAIR MRI data were generated. Diagnostic models were developed from real IDH-wild type (n = 80) with real IDH-mutant glioblastomas (n = 38), or with synthetic IDH-mutant glioblastomas, or augmented by adding both real and synthetic IDH-mutant glioblastomas. Turing tests showed synthetic data showed reality (classification rate of 55%). Both the real and synthetic data showed that a more frontal or insular location (odds ratio [OR] 1.34 vs. 1.52; P = 0.04) and distinct non-enhancing tumor margins (OR 2.68 vs. 3.88; P < 0.001), which become significant predictors of IDH-mutation. In an independent validation set, diagnostic accuracy was higher for the augmented model (90.9% [40/44] and 93.2% [41/44] for each reader, respectively) than for the real model (84.1% [37/44] and 86.4% [38/44] for each reader, respectively). The GAN-based synthetic images yield morphologically variable, realistic-seeming IDH-mutant glioblastomas. GAN will be useful to create a realistic training set in terms of morphologic variations and quality, thereby improving diagnostic performance in a clinical model.

摘要

生成对抗网络(GAN)生成合成图像以增加数据量,但 GAN 是否能确保有意义的形态变化尚不清楚。我们研究了基于 GAN 的合成图像是否能提供足够的形态变化,从而改善基于分子的预测,这是一种罕见的异柠檬酸脱氢酶(IDH)突变型胶质母细胞瘤。GAN 最初在 500 个正常大脑和 110 个 IDH 突变高级星形细胞瘤上进行了训练,并生成了配对的对比增强 T1 加权和 FLAIR MRI 数据。诊断模型是从真实的 IDH 野生型(n=80)和真实的 IDH 突变型胶质母细胞瘤(n=38)中开发的,或者是从合成的 IDH 突变型胶质母细胞瘤中开发的,或者是通过添加真实和合成的 IDH 突变型胶质母细胞瘤来增强的。图灵测试表明,合成数据具有真实性(分类率为 55%)。真实和合成数据均表明,肿瘤位置更靠前或更靠岛(优势比[OR]为 1.34 比 1.52;P=0.04)和明显的非增强肿瘤边界(OR 为 2.68 比 3.88;P<0.001),这些都是 IDH 突变的重要预测因素。在独立验证集中,增强模型的诊断准确性更高(两位读者的准确率分别为 90.9%[40/44]和 93.2%[41/44]),高于真实模型(两位读者的准确率分别为 84.1%[37/44]和 86.4%[38/44])。基于 GAN 的合成图像产生了形态变化多样、看起来真实的 IDH 突变型胶质母细胞瘤。GAN 将有助于创建具有形态变化和质量的逼真训练集,从而提高临床模型中的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db38/8110557/ae94abe5e0df/41598_2021_89477_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验