Suppr超能文献

基于人工神经网络的多序列 MRI 自动脑区提取

Automated brain extraction of multisequence MRI using artificial neural networks.

机构信息

Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany.

出版信息

Hum Brain Mapp. 2019 Dec 1;40(17):4952-4964. doi: 10.1002/hbm.24750. Epub 2019 Aug 12.

Abstract

Brain extraction is a critical preprocessing step in the analysis of neuroimaging studies conducted with magnetic resonance imaging (MRI) and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aim to overcome these limitations. We demonstrate that HD-BET outperforms six popular, publicly available brain extraction algorithms in several large-scale neuroimaging datasets, including one from a prospective multicentric trial in neuro-oncology, yielding state-of-the-art performance with median improvements of +1.16 to +2.50 points for the Dice coefficient and -0.66 to -2.51 mm for the Hausdorff distance. Importantly, the HD-BET algorithm, which shows robust performance in the presence of pathology or treatment-induced tissue alterations, is applicable to a broad range of MRI sequence types and is not influenced by variations in MRI hardware and acquisition parameters encountered in both research and clinical practice. For broader accessibility, the HD-BET prediction algorithm is made freely available (www.neuroAI-HD.org) and may become an essential component for robust, automated, high-throughput processing of MRI neuroimaging data.

摘要

脑提取是磁共振成像 (MRI) 神经影像学研究分析中的一个关键预处理步骤,它会影响下游分析的准确性。然而,大多数脑提取算法都是针对处理健康大脑进行优化的,因此在存在病理性改变的大脑或应用于异质 MRI 数据集时,这些算法经常会失败。在这里,我们引入了一种新的、经过严格验证的基于人工神经网络的算法(称为 HD-BET),旨在克服这些限制。我们证明,HD-BET 在几个大型神经影像学数据集(包括一项神经肿瘤学的前瞻性多中心试验)中的表现优于六种流行的、公开可用的脑提取算法,在 Dice 系数方面的中位数提高了+1.16 到+2.50 分,在 Hausdorff 距离方面的中位数提高了-0.66 到-2.51 毫米。重要的是,HD-BET 算法在存在病理或治疗引起的组织改变的情况下表现稳健,适用于广泛的 MRI 序列类型,不受研究和临床实践中遇到的 MRI 硬件和采集参数变化的影响。为了更广泛的可及性,HD-BET 预测算法是免费提供的(www.neuroAI-HD.org),并且可能成为 MRI 神经影像学数据的稳健、自动、高通量处理的重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1935/6865732/8fd979e96bc6/HBM-40-4952-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验