Suppr超能文献

从水溶性 α-螺旋桶中构建离子通道。

Constructing ion channels from water-soluble α-helical barrels.

机构信息

School of Chemistry, University of Bristol, Bristol, UK.

Oxford Nanopore Technologies Ltd, Oxford, UK.

出版信息

Nat Chem. 2021 Jul;13(7):643-650. doi: 10.1038/s41557-021-00688-0. Epub 2021 May 10.

Abstract

The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Next, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from the lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.

摘要

设计能够在膜中组装形成功能性离子通道的肽是具有挑战性的。具体来说,必须在肽之间以及肽-脂质界面处同时设计疏水性相互作用。在这里,我们采取了一种多步骤的方法来解决这个问题。首先,我们使用合理的从头设计生成具有极性内部的水溶性α-螺旋桶,并使用高分辨率 X 射线晶体学确认其结构。这些α-螺旋桶具有类似于跨膜通道的充满水的腔。接下来,我们修改序列以促进它们插入脂质双层。在膜中对肽进行单通道电记录和荧光成像显示均一的、阳离子选择性的单通道电导通道。然而,令人惊讶的是,从一种肽的脂质立方相解析的 X 射线结构揭示了一种具有紧密堆积的螺旋和狭窄通道的替代状态。为了调和这些观察结果,我们进行计算分析以比较肽的可能不同状态的性质。

相似文献

1
Constructing ion channels from water-soluble α-helical barrels.
Nat Chem. 2021 Jul;13(7):643-650. doi: 10.1038/s41557-021-00688-0. Epub 2021 May 10.
2
Insights into Membrane Damage by -Helical and -Sheet Peptides.
Biomolecules. 2025 Jul 7;15(7):973. doi: 10.3390/biom15070973.
4
Charge distribution and helicity tune the binding of septin's amphipathic helix domain to membranes.
Biophys J. 2025 Apr 15;124(8):1298-1312. doi: 10.1016/j.bpj.2025.03.008. Epub 2025 Apr 2.
5
Rational Design Principles for α-Helical Peptide Barrels with Dynamic Conductive Channels.
J Am Chem Soc. 2025 Apr 9;147(14):11741-11753. doi: 10.1021/jacs.4c13933. Epub 2025 Mar 28.
6
Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method.
Anal Sci. 2025 Jul;41(7):1073-1082. doi: 10.1007/s44211-025-00792-y. Epub 2025 May 20.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis.
Biophys J. 2025 Jan 21;124(2):458-470. doi: 10.1016/j.bpj.2024.12.019. Epub 2024 Dec 17.

引用本文的文献

1
Integrated biotechnological and AI innovations for crop improvement.
Nature. 2025 Jul;643(8073):925-937. doi: 10.1038/s41586-025-09122-8. Epub 2025 Jul 23.
2
Embracing Complexity: Peptides as Tunable Scaffolds in the Construction of Discrete Supramolecular Systems.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202512014. doi: 10.1002/anie.202512014. Epub 2025 Jul 25.
3
Native globular ferritin nanopore sensor.
Nat Commun. 2025 Jun 6;16(1):5268. doi: 10.1038/s41467-025-60322-2.
4
De Novo Design of Parallel and Antiparallel AB Heterohexameric α-Helical Barrels.
Biochemistry. 2025 May 6;64(9):1973-1982. doi: 10.1021/acs.biochem.4c00584. Epub 2025 Apr 14.
5
Innovative Self-Assembly of 15-Mer Chimeric α-Peptide-Oligourea Foldamers toward Cl-Selective Ion Channels.
Small Sci. 2024 May 30;4(8):2300352. doi: 10.1002/smsc.202300352. eCollection 2024 Aug.
6
Solid-state NMR of membrane peptides and proteins in the lipid cubic phase.
Biophys J. 2025 May 6;124(9):1387-1400. doi: 10.1016/j.bpj.2025.03.012. Epub 2025 Mar 20.
7
Toward single-molecule protein sequencing using nanopores.
Nat Biotechnol. 2025 Mar;43(3):312-322. doi: 10.1038/s41587-025-02587-y. Epub 2025 Mar 17.
8
De novo design of transmembrane fluorescence-activating proteins.
Nature. 2025 Apr;640(8057):249-257. doi: 10.1038/s41586-025-08598-8. Epub 2025 Feb 19.
9
Bottom-up design of calcium channels from defined selectivity filter geometry.
bioRxiv. 2024 Dec 20:2024.12.19.629320. doi: 10.1101/2024.12.19.629320.
10
Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.
J Membr Biol. 2024 Dec 19. doi: 10.1007/s00232-024-00331-2.

本文引用的文献

1
Computational design of transmembrane pores.
Nature. 2020 Sep;585(7823):129-134. doi: 10.1038/s41586-020-2646-5. Epub 2020 Aug 26.
2
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
3
Computational design of G Protein-Coupled Receptor allosteric signal transductions.
Nat Chem Biol. 2020 Jan;16(1):77-86. doi: 10.1038/s41589-019-0407-2. Epub 2019 Dec 2.
4
CHAP: A Versatile Tool for the Structural and Functional Annotation of Ion Channel Pores.
J Mol Biol. 2019 Aug 9;431(17):3353-3365. doi: 10.1016/j.jmb.2019.06.003. Epub 2019 Jun 17.
5
Navigating the Structural Landscape of De Novo α-Helical Bundles.
J Am Chem Soc. 2019 Jun 5;141(22):8787-8797. doi: 10.1021/jacs.8b13354. Epub 2019 May 22.
6
Retention of Native Quaternary Structure in Racemic Melittin Crystals.
J Am Chem Soc. 2019 May 15;141(19):7704-7708. doi: 10.1021/jacs.9b02691. Epub 2019 May 6.
7
Packing of apolar side chains enables accurate design of highly stable membrane proteins.
Science. 2019 Mar 29;363(6434):1418-1423. doi: 10.1126/science.aav7541.
8
Maintaining and breaking symmetry in homomeric coiled-coil assemblies.
Nat Commun. 2018 Oct 8;9(1):4132. doi: 10.1038/s41467-018-06391-y.
9
De novo design of a fluorescence-activating β-barrel.
Nature. 2018 Sep;561(7724):485-491. doi: 10.1038/s41586-018-0509-0. Epub 2018 Sep 12.
10
DNA scaffolds support stable and uniform peptide nanopores.
Nat Nanotechnol. 2018 Aug;13(8):739-745. doi: 10.1038/s41565-018-0139-6. Epub 2018 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验