Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Phys Chem Chem Phys. 2021 May 21;23(19):11355-11365. doi: 10.1039/d1cp00703c. Epub 2021 May 11.
Trimethylamine N-oxide (TMAO) is a well known osmolyte in nature, which is used by deep sea fish to stabilize proteins against High Hydrostatic Pressure (HHP). We present a combined ab initio molecular dynamics, force field molecular dynamics, and THz absorption study of TMAO in water up to 12 kbar to decipher its solvation properties upon extreme compression. On the hydrophilic oxygen side of TMAO, AIMD simulations at 1 bar and 10 kbar predict a change of the coordination number from a dominating TMAO·(HO) complex at ambient conditions towards an increased population of a TMAO·(HO) complex at HHP conditions. This increase of the TMAO-oxygen coordination number goes in line with a weakening of the local hydrogen bond network, spectroscopic shifts and intensity changes of the corresponding intermolecular THz bands. Using a pressure-dependent HHP force field, FFMD simulations predict a significant increase of hydrophobic hydration from 1 bar up to 4-5 kbar, which levels off at higher pressures up to 10 kbar. THz spectroscopic data reveal two important pressure regimes with spectroscopic inflection points of the dominant intermolecular modes: The first regime (1.5-2 kbar) is barely recognizable in the simulation data. However, it relates well with the observation that the apparent molar volume of solvated TMAO is nearly constant in the biologically relevant pressure range up to 1 kbar as found in the deepest habitats on Earth in the ocean. The second inflection point around 4-5 kbar is related to the amount of hydrophobic hydration as predicted by the FFMD simulations. In particular, the blueshift of the intramolecular CNC bending mode of TMAO at about 390 cm is the spectroscopic signature of increasingly pronounced pressure-induced changes in the solvation shell of TMAO. Thus, the CNC bend can serve as local pressure sensor in the multi-kbar pressure regime.
三甲胺 N-氧化物(TMAO)是自然界中一种众所周知的渗透物,深海鱼类用它来稳定蛋白质以对抗高静压(HHP)。我们进行了一项结合从头算分子动力学、力场分子动力学和太赫兹吸收研究,研究了 TMAO 在水中的性质,直至 12kbar,以破解其在极端压缩下的溶剂化性质。在 TMAO 的亲水氧侧,在 1 巴和 10kbar 下的 AIMD 模拟预测,配位数从环境条件下占主导地位的 TMAO·(HO)复合物向 HHP 条件下 TMAO·(HO)复合物的增加。这种 TMAO-氧配位数的增加与局部氢键网络的减弱、相应的分子间太赫兹带的光谱位移和强度变化一致。使用压力依赖的 HHP 力场,FFMD 模拟预测从 1 巴到 4-5kbar,疏水性水合作用显著增加,在更高压力下(高达 10kbar)达到平衡。太赫兹光谱数据揭示了两个重要的压力区,其中主要的分子间模式存在光谱拐点:第一个压力区(1.5-2kbar)在模拟数据中几乎无法识别。然而,它与以下观察结果一致,即在地球最深的海洋栖息地的生物相关压力范围内,TMAO 的溶剂化表观摩尔体积几乎保持不变。第二个拐点约为 4-5kbar,与 FFMD 模拟预测的疏水性水合量有关。特别是,TMAO 的分子内 CNC 弯曲模式在约 390cm 处的蓝移是溶剂化壳中越来越明显的压力诱导变化的光谱特征。因此,CNC 弯曲可以作为多 kbar 压力范围内的局部压力传感器。