Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Biophys J. 2023 Apr 4;122(7):1414-1422. doi: 10.1016/j.bpj.2023.03.008. Epub 2023 Mar 13.
Osmolytes are ubiquitous in the cell and play an important role in controlling protein stability under stress. The natural osmolyte trimethylamine N-oxide (TMAO) is used by marine animals to counteract the effect of pressure denaturation at large depths. The molecular mechanism of TMAO stabilization against pressure and urea denaturation has been extensively studied, but unlike the case of other osmolytes, the ability of TMAO to protect proteins from high temperature has not been quantified. To reveal the effect of TMAO on folded and unfolded protein ensembles and the hydration shell at different temperatures, we study a mutant of the well-characterized, fast-folding model protein B (PRB). We carried out, in total, >190 μs all-atom simulations of thermal folding/unfolding of PRB at multiple temperatures and concentrations of TMAO. The simulations show increased thermal stability of PRB in the presence of TMAO. Partly structured, compact ensembles are favored over the unfolded state. TMAO forms two shells near the protein: an outer shell away from the protein surface has altered H-bond lifetimes of water molecules and increases hydration of the protein to help stabilize it; a less-populated inner shell with an opposite TMAO orientation closer to the protein surface binds exclusively to basic side chains. The cooperative cosolute effect of the inner and outer shell TMAO has a small number of TMAO molecules "herding" water molecules into two hydration shells at or near the protein surface. The stabilizing effect of TMAO on our protein saturates at 1 M despite higher TMAO solubility, so there may be little evolutionary pressure for extremophiles to produce higher intracellular TMAO concentrations, if true in general.
渗透物在细胞中无处不在,在控制应激下蛋白质稳定性方面发挥着重要作用。天然渗透物三甲胺 N-氧化物 (TMAO) 被海洋动物用来抵消在大深度下压力变性的影响。TMAO 稳定压力和尿素变性的分子机制已被广泛研究,但与其他渗透物不同,TMAO 保护蛋白质免受高温的能力尚未被量化。为了揭示 TMAO 对折叠和未折叠蛋白质集合以及不同温度下水合壳的影响,我们研究了一种经过充分表征的快速折叠模型蛋白 B (PRB) 的突变体。我们总共进行了 >190 μs 的 PRB 在不同温度和 TMAO 浓度下的热折叠/展开的全原子模拟。模拟表明 TMAO 存在时 PRB 的热稳定性增加。部分结构、紧凑的集合比展开状态更受欢迎。TMAO 在蛋白质附近形成两个壳:远离蛋白质表面的外壳改变了水分子的氢键寿命并增加了蛋白质的水合作用以帮助稳定它;一个不太流行的、具有相反 TMAO 取向的内层壳更靠近蛋白质表面,专门与碱性侧链结合。内层和外层 TMAO 的协同共溶剂效应使少量 TMAO 分子“放牧”水分子进入蛋白质表面或附近的两个水合壳中。尽管 TMAO 的溶解度更高,但 TMAO 对我们蛋白质的稳定作用在 1 M 时达到饱和,因此如果普遍如此,极端微生物产生更高细胞内 TMAO 浓度的进化压力可能很小。