Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25, #455, e/ J e I, Vedado, 10400, Havana, Cuba.
Posgrado en Ciencias Naturales E Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, 05348, Mexico City, Mexico.
Protein J. 2021 Aug;40(4):576-588. doi: 10.1007/s10930-021-09992-7. Epub 2021 May 10.
Protein immobilization by electrostatic adsorption to a support could represent a good option. On the other hand, lysozyme (EC 3.2.1.17) is a little and basic protein. The objective of this work was to test the functionality of the strategy of Rational Design of Immobilized Derivatives for the immobilization by electrostatic adsorption of egg white lysozyme on SP-Sepharose FastFlow support. The RDID software was used to predict the superficial lysozyme clusters, the electrostatic configuration probability for each cluster, and the theoretical and estimated maximum quantity of protein to be immobilized. In addition, immobilization was performed and the experimental parameter practical maximum quantity of protein to be immobilized and the enzymatic activity of the immobilized derivative were assessed. The estimated maximum quantity of protein to be immobilized (9.49 protein mg/support g) was close to the experimental practical maximum quantity of protein to be immobilized (14.73 ± 0.09 protein mg/support g). The enzymatic activity assay with the chitosan substrate showed the catalytic functionality of the lysozyme-SP-Sepharose immobilized derivative (35.85 ± 3.07 U/support g), which preserved 78% functional activity. The used algorithm to calculate the estimated maximum quantity of protein to be immobilized works for other proteins, porous solid supports and immobilization methods, and this parameter has a high predictive value, useful for obtaining optimum immobilized derivatives. The applied methodology is valid to predict the most probable protein-support configurations and their catalytic competences, which concur with the experimental results. The produced biocatalyst had a high retention of functional activity. This indicates its functionality in enzymatic bioconversion processes.
通过静电吸附将蛋白质固定在载体上可能是一个不错的选择。另一方面,溶菌酶(EC 3.2.1.17)是一种小而碱性的蛋白质。本工作的目的是测试通过静电吸附将蛋清溶菌酶固定在 SP-Sepharose FastFlow 载体上的理性设计固定化衍生物策略的功能。使用 RDID 软件预测表面溶菌酶簇、每个簇的静电配置概率以及理论和估计的最大蛋白质固定化量。此外,还进行了固定化,并评估了实验参数实际最大蛋白质固定化量和固定化衍生物的酶活性。估计的最大蛋白质固定化量(9.49 蛋白 mg/载体 g)接近实验实际最大蛋白质固定化量(14.73 ± 0.09 蛋白 mg/载体 g)。用壳聚糖底物进行的酶活性测定表明,溶菌酶-SP-Sepharose 固定化衍生物具有催化功能(35.85 ± 3.07 U/载体 g),保留了 78%的功能活性。用于计算估计的最大蛋白质固定化量的算法适用于其他蛋白质、多孔固体载体和固定化方法,并且该参数具有很高的预测值,有助于获得最佳的固定化衍生物。所应用的方法学可用于预测最可能的蛋白质-载体构型及其催化能力,这与实验结果一致。所产生的生物催化剂具有较高的功能活性保留率。这表明它在酶生物转化过程中的功能。