Centro de Estudio de Proteínas, Universidad de La Habana, Calle 25, #455, e/J e I, Vedado, 10400, Havana, Cuba.
Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, 05348, Mexico, Mexico.
World J Microbiol Biotechnol. 2021 Jan 4;37(1):9. doi: 10.1007/s11274-020-02972-6.
Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize (tMQ) on solid supports, implemented in the RDID software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQ parameter by electrostatic immobilization of ten microbial strains on AMBERJET 4200 Cl porous solid support. All predicted tMQ match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDID software are more accurate than the values predicted by the RDID software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/10 cells) than that of the cell suspension (1.5 μg IAA-like indoles/10 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/10 cells) than the resuspended cells (14.5 μg Cr(III)/10 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications.
当前全球面临的挑战是提高粮食产量并减少工业排放对环境的污染。为此,细菌可以产生植物生长促进激素,并通过去除重金属来介导污水的生物修复。我们开发了一种固定化衍生设计(RDID)策略,适用于蛋白质、孢子和细胞的固定化,并在 RDID 软件中实现。在这项工作中,我们提出了新的算法来优化在固体载体上固定化的理论最大细胞数量(tMQ),并将其实现到 RDID 软件中。对现有算法的主要修改与球堆积理论和在支撑表面上的排他性固定化有关。我们通过将十种微生物菌株静电固定在 AMBERJET 4200 Cl 多孔固体载体上,实验验证了新的 tMQ 参数。所有预测的 tMQ 都与实际最大细胞固定化数量相匹配,置信度为 10%。RDID 软件预测的值比 RDID 软件预测的值更准确。一种固定化细菌衍生产物的 3-吲哚乙酸(IAA)产量更高(~2.6 μg IAA 样吲哚/10 个细胞),高于细胞悬浮液(1.5 μg IAA 样吲哚/10 个细胞),也高于作为吲哚前体添加的色氨酸量。另一种固定化细菌衍生产物在 Cr(VI)到 Cr(III)的生物转化中比悬浮细胞(14.5 μg Cr(III)/10 个细胞)更活跃(22 μg Cr(III)/10 个细胞)。优化的 RDID 策略可用于合成具有有用生物技术应用的固定化细菌衍生产物。