Suppr超能文献

拟南芥表达预测器可用于推断基因模块的转录调控因子。

An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules.

机构信息

School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.

School of Data Science, University of Science and Technology of China, Hefei, China.

出版信息

Plant J. 2021 Jul;107(2):597-612. doi: 10.1111/tpj.15315. Epub 2021 Jun 8.

Abstract

The regulation of gene expression by transcription factors (TFs) has been studied for a long time, but no model that can accurately predict transcriptome profiles based on TF activities currently exists. Here, we developed a computational approach, named EXPLICIT (Expression Prediction via Log-linear Combination of Transcription Factors), to construct a universal predictor for Arabidopsis to predict the expression of 29 182 non-TF genes using 1678 TFs. When applied to RNA-Seq samples from diverse tissues, EXPLICIT generated accurate predicted transcriptomes correlating well with actual expression, with an average correlation coefficient of 0.986. After recapitulating the quantitative relationships between TFs and their target genes, EXPLICIT enabled downstream inference of TF regulators for genes and gene modules functioning in diverse plant pathways, including those involved in suberin, flavonoid, glucosinolate metabolism, lateral root, xylem, secondary cell wall development or endoplasmic reticulum stress response. Our approach showed a better ability to recover the correct TF regulators when compared with existing plant tools, and provides an innovative way to study transcriptional regulation.

摘要

转录因子(TFs)对基因表达的调控已经研究了很长时间,但目前还没有一种能够基于 TF 活性准确预测转录组图谱的模型。在这里,我们开发了一种计算方法,命名为 EXPLICIT(通过转录因子的对数线性组合进行表达预测),用于构建一个通用的拟南芥预测器,使用 1678 个 TF 来预测 29182 个非 TF 基因的表达。当应用于来自不同组织的 RNA-Seq 样本时,EXPLICIT 生成了与实际表达高度相关的准确预测转录组,平均相关系数为 0.986。在重现 TF 与其靶基因之间的定量关系之后,EXPLICIT 能够对参与角质素、类黄酮、硫代葡萄糖苷代谢、侧根、木质部、次生细胞壁发育或内质网应激反应等不同植物途径的基因和基因模块的 TF 调节剂进行下游推断。与现有的植物工具相比,我们的方法在恢复正确的 TF 调节剂方面表现出更好的能力,并为研究转录调控提供了一种创新的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验