Suppr超能文献

作物转录调控格局探索的最新进展。

Recent advances in exploring transcriptional regulatory landscape of crops.

作者信息

Huo Qiang, Song Rentao, Ma Zeyang

机构信息

State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

出版信息

Front Plant Sci. 2024 Jun 5;15:1421503. doi: 10.3389/fpls.2024.1421503. eCollection 2024.

Abstract

Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.

摘要

作物育种需要培育和选择具有改良农艺性状的植物品种。现代分子技术,如基因组编辑,能够通过改变特定调控基因或功能基因的表达来更有效地操纵植物表型。因此,深入理解支撑这些性状的转录调控机制至关重要。在多组学时代,已经为多种作物物种生成了大量的组学数据,包括基因组学、表观基因组学、转录组学、蛋白质组学和单细胞组学。丰富的数据资源和先进计算工具的出现为全面了解和深入认识与理想性状相关的调控过程提供了前所未有的机会。本综述重点关注利用多组学数据研究基因表达调控的综合网络方法。讨论了各种类型的调控网络及其推理方法,重点是作物植物的最新进展。多组学数据的整合已被证明对构建高可信度的调控网络至关重要。随着这些方法的完善,它们将显著加强作物育种工作并促进全球粮食安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b7/11188431/37c79ca3e69f/fpls-15-1421503-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验