Suppr超能文献

二维铁电体CuInPS对单层MoSe中激子复合体的非挥发性电控制

Nonvolatile Electric Control of Exciton Complexes in Monolayer MoSe with Two-Dimensional Ferroelectric CuInPS.

作者信息

Mao Xiaoyu, Fu Jun, Chen Chen, Li Yue, Liu Heng, Gong Ming, Zeng Hualing

机构信息

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Science at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

ACS Appl Mater Interfaces. 2021 May 26;13(20):24250-24257. doi: 10.1021/acsami.1c03067. Epub 2021 May 11.

Abstract

Monolayer transition-metal dichalcogenides (TMDs) have provided a platform to investigate the excitonic states at the two-dimensional (2D) limit. The inherent properties of excitons in TMDs, such as the photoluminescence quantum yield, the charge states, and even the binding energy, can be effectively controlled via electrostatic gating, selective carrier doping, or substrate dielectric engineering. Here, aiming for the nonvolatile electrical tunability of excitonic states and thereby the optical property of TMDs, we demonstrate a 2D ferroelectric heterostructure with monolayer MoSe and ultrathin CuInPS (CIPS). In the heterostructure, the electric polarization of CIPS results in continuous, global, and large electronic modulation in monolayer MoSe. With the saturated ferroelectric polarization of CIPS, electron-doped or hole-doped MoSe is realized in a single device. The carrier density tunability in the heterostructure is as high as 5 × 10 cm. The nonvolatile behavior of these devices up to 3 months is also characterized. Our results provide a new and practical strategy for low-power consumption and agelong tunable optoelectronic devices.

摘要

单层过渡金属二硫族化合物(TMDs)为研究二维(2D)极限下的激子态提供了一个平台。通过静电门控、选择性载流子掺杂或衬底介电工程,可以有效地控制TMDs中激子的固有特性,如光致发光量子产率、电荷态,甚至结合能。在此,为了实现激子态的非易失性电可调谐性,进而实现TMDs的光学性质,我们展示了一种由单层MoSe和超薄CuInPS(CIPS)组成的二维铁电异质结构。在该异质结构中,CIPS的电极化导致单层MoSe中连续、全局且大的电子调制。利用CIPS的饱和铁电极化,在单个器件中实现了电子掺杂或空穴掺杂的MoSe。该异质结构中的载流子密度可调性高达5×10¹² cm⁻²。还对这些器件长达3个月的非易失性行为进行了表征。我们的结果为低功耗和长期可调谐光电器件提供了一种新的实用策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验