Department of Biological Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Cell Stem Cell. 2021 Oct 7;28(10):1775-1789.e5. doi: 10.1016/j.stem.2021.04.026. Epub 2021 May 10.
Regeneration of the architecturally complex alveolar niche of the lung requires precise temporal and spatial control of epithelial cell behavior. Injury can lead to a permanent reduction in gas exchange surface area and respiratory function. Using mouse models, we show that alveolar type 1 (AT1) cell plasticity is a major and unappreciated mechanism that drives regeneration, beginning in the early postnatal period during alveolar maturation. Upon acute neonatal lung injury, AT1 cells reprogram into alveolar type 2 (AT2) cells, promoting alveolar regeneration. In contrast, the ability of AT2 cells to regenerate AT1 cells is restricted to the mature lung. Unbiased genomic assessment reveals that this previously unappreciated level of plasticity is governed by the preferential activity of Hippo signaling in the AT1 cell lineage. Thus, cellular plasticity is a temporally acquired trait of the alveolar epithelium and presents an alternative mode of tissue regeneration in the postnatal lung.
肺的结构复杂的肺泡龛的再生需要精确的时空控制上皮细胞的行为。损伤可导致气体交换表面积和呼吸功能的永久性降低。我们使用小鼠模型表明,肺泡 I 型(AT1)细胞的可塑性是一种主要的、未被认识的机制,它在肺泡成熟的早期就开始驱动再生。在急性新生儿肺损伤时,AT1 细胞重新编程为肺泡 II 型(AT2)细胞,促进肺泡再生。相比之下,AT2 细胞再生 AT1 细胞的能力仅限于成熟的肺。无偏基因组评估表明,这种以前未被认识到的可塑性水平是由 Hippo 信号在 AT1 细胞谱系中的优先活性所控制的。因此,细胞可塑性是肺泡上皮的一种随时间获得的特征,并为出生后肺组织的再生提供了一种替代模式。