Suppr超能文献

受昆虫翅膀启发的具有曲率诱导刚度控制的打印微型机器人致动器。

Printed miniature robotic actuators with curvature-induced stiffness control inspired by the insect wing.

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.

出版信息

Bioinspir Biomim. 2021 Jun 17;16(4). doi: 10.1088/1748-3190/abffec.

Abstract

Stimuli-responsive actuating materials offer a promising way to power insect-scale robots, but a vast majority of these material systems are too soft for load bearing in different applications. While strategies for active stiffness control have been developed for humanoid-scale robots, for insect-scale counterparts for which compactness and functional complexity are essential requirements, these strategies are too bulky to be applicable. Here, we introduce a method whereby the same actuating material serves not only as the artificial muscles to power an insect-scale robot for load bearing, but also to increase the robot stiffness on-demand, by bending it to increase the second moment of area. This concept is biomimetically inspired by how insect wings stiffen themselves, and is realized here with manganese dioxide as a high-performing electrochemical actuating material printed on metallized polycarbonate films as the robot bodies. Using an open-electrodeposition printing method, the robots can be rapidly fabricated in one single step in ∼15 minutes, and they can be electrochemically actuated by a potential of ∼1 V to produce large bending of ∼500° in less than 5 s. With the stiffness enhancement method, fast (∼5 s) and reversible stiffness tuning with a theoretical increment by ∼4000 times is achieved in a micro-robotic arm at ultra-low potential input of ∼1 V, resulting in an improvement in load-bearing capability by about 4 times from ∼10N to ∼41N.

摘要

刺激响应致动材料为昆虫级机器人提供了一种很有前途的动力方式,但绝大多数这些材料系统在不同应用中都太软,无法承重。虽然已经为类人机器人开发了主动刚度控制策略,但对于紧凑型和功能复杂性至关重要的昆虫级机器人,这些策略过于庞大而无法应用。在这里,我们介绍了一种方法,其中相同的致动材料不仅用作承载负载的昆虫级机器人的人工肌肉,而且还通过弯曲来增加第二转动惯量来按需增加机器人的刚度。这个概念是受昆虫翅膀如何自行变硬的启发,这里通过使用二氧化锰作为高性能电化学致动材料来实现,该材料打印在金属化聚碳酸酯薄膜上作为机器人主体。使用开路电沉积打印方法,可以在大约 15 分钟内快速一步制造机器人,并且可以通过约 1 V 的电势进行电化学致动,以在不到 5 s 的时间内产生约 500°的大弯曲。通过这种刚度增强方法,可以在超低输入电压约 1 V 下,以超快的(约 5 s)和可逆的方式实现理论上增加约 4000 倍的刚度调节,从而使微机器人臂的承载能力提高约 4 倍,从约 10N 提高到约 41N。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验