Suppr超能文献

两步机器学习方法用于活体视频显微镜中微血管流的快速分析。

Two-step machine learning method for the rapid analysis of microvascular flow in intravital video microscopy.

机构信息

Department of Computer Sciences, Western University, London, ON, N6A 3K7, Canada.

Department of Medical Biophysics, Western University, London, ON, N6A 3K7, Canada.

出版信息

Sci Rep. 2021 May 11;11(1):10047. doi: 10.1038/s41598-021-89469-w.

Abstract

Microvascular blood flow is crucial for tissue and organ function and is often severely affected by diseases. Therefore, investigating the microvasculature under different pathological circumstances is essential to understand the role of the microcirculation in health and sickness. Microvascular blood flow is generally investigated with Intravital Video Microscopy (IVM), and the captured images are stored on a computer for later off-line analysis. The analysis of these images is a manual and challenging process, evaluating experiments very time consuming and susceptible to human error. Since more advanced digital cameras are used in IVM, the experimental data volume will also increase significantly. This study presents a new two-step image processing algorithm that uses a trained Convolutional Neural Network (CNN) to functionally analyze IVM microscopic images without the need for manual analysis. While the first step uses a modified vessel segmentation algorithm to extract the location of vessel-like structures, the second step uses a 3D-CNN to assess whether the vessel-like structures have blood flowing in it or not. We demonstrate that our two-step algorithm can efficiently analyze IVM image data with high accuracy (83%). To our knowledge, this is the first application of machine learning for the functional analysis of microvascular blood flow in vivo.

摘要

微血管血流对于组织和器官功能至关重要,并且经常受到疾病的严重影响。因此,研究不同病理情况下的微血管对于理解微循环在健康和疾病中的作用至关重要。微血管血流通常通过活体视频显微镜(IVM)进行研究,捕获的图像存储在计算机上以备离线分析。这些图像的分析是一个手动且具有挑战性的过程,评估实验非常耗时且容易出错。由于 IVM 中使用了更先进的数码相机,因此实验数据量也会显著增加。本研究提出了一种新的两步图像处理算法,该算法使用经过训练的卷积神经网络(CNN)来对 IVM 显微镜图像进行功能分析,而无需手动分析。虽然第一步使用修改后的血管分割算法来提取血管样结构的位置,但第二步使用 3D-CNN 来评估血管样结构中是否有血流。我们证明我们的两步算法可以以高精度(83%)有效地分析 IVM 图像数据。据我们所知,这是机器学习在体内微血管血流功能分析中的首次应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2846/8113514/ceee7087160e/41598_2021_89469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验