Suppr超能文献

使用深度卷积神经网络检测活体视频显微镜中的细胞。

Detecting cells in intravital video microscopy using a deep convolutional neural network.

机构信息

Departamento de Computação, Universidade Federal de São Carlos, Washington Luís Rd., Km 235, 13.565-905, São Carlos, SP, Brazil.

Department of Radiology, School of Biomedical Engineering, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, V6T 2B5, Vancouver, Canada.

出版信息

Comput Biol Med. 2021 Feb;129:104133. doi: 10.1016/j.compbiomed.2020.104133. Epub 2020 Nov 21.

Abstract

The analysis of leukocyte recruitment in intravital video microscopy (IVM) is essential to the understanding of inflammatory processes. However, because IVM images often present a large variety of visual characteristics, it is hard for an expert human or even conventional machine learning techniques to detect and count the massive amount of cells and extract statistical measures precisely. Convolutional neural networks are a promising approach to overcome this problem, but due to the difficulty of labeling cells, large data sets with ground truth are rare. The present work explores an adaptation of the RetinaNet model with a suite of augmentation techniques and transfer learning for detecting leukocytes in IVM data. The augmentation techniques include simulating the Airy pattern and motion artifacts present in microscopy imaging, followed by traditional photometric, geometric and smooth elastic transformations to reproduce color and shape changes in cells. In addition, we analyzed the use of different network backbones, feature pyramid levels, and image input scales. We have found that even with limited data, our strategy not only enables training without overfitting but also boosts generalization performance. Among several experiments, the model reached a value of 94.84 for the average precision (AP) metric as our best outcome when using data from different image modalities. We also compared our results with conventional image processing techniques and open-source tools. The results showed an outstanding precision of the method compared with other approaches, presenting low error rates for cell counting and centroid distances. Code is available at: https://github.com/brunoggregorio/retinanet-cell-detection.

摘要

在活体视频显微镜 (IVM) 中分析白细胞募集对于理解炎症过程至关重要。然而,由于 IVM 图像通常呈现出多种视觉特征,因此专家甚至传统的机器学习技术都难以准确地检测和计数大量的细胞并提取统计数据。卷积神经网络是克服这个问题的一种很有前途的方法,但是由于细胞标记的困难,具有真实数据的大型数据集很少。本工作探索了一种使用一系列增强技术和迁移学习的 RetinaNet 模型的改编,用于检测 IVM 数据中的白细胞。增强技术包括模拟显微镜成像中存在的艾里图案和运动伪影,然后进行传统的光度、几何和光滑弹性变换,以再现细胞的颜色和形状变化。此外,我们还分析了使用不同的网络骨干、特征金字塔级别和图像输入尺度的情况。我们发现,即使在数据有限的情况下,我们的策略不仅能够在不产生过拟合的情况下进行训练,而且还能提高泛化性能。在几个实验中,当使用来自不同图像模态的数据时,该模型的平均精度 (AP) 指标达到了 94.84,这是我们的最佳结果。我们还将我们的结果与传统图像处理技术和开源工具进行了比较。结果表明,与其他方法相比,该方法具有出色的精度,细胞计数和质心距离的错误率很低。代码可在:https://github.com/brunoggregorio/retinanet-cell-detection 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验