Suppr超能文献

随机前瞻性评估基因组测序与标准护理作为一线分子诊断测试。

Randomized prospective evaluation of genome sequencing versus standard-of-care as a first molecular diagnostic test.

机构信息

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.

Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.

出版信息

Genet Med. 2021 Sep;23(9):1689-1696. doi: 10.1038/s41436-021-01193-y. Epub 2021 May 11.

Abstract

PURPOSE

To evaluate the diagnostic yield and clinical relevance of clinical genome sequencing (cGS) as a first genetic test for patients with suspected monogenic disorders.

METHODS

We conducted a prospective randomized study with pediatric and adult patients recruited from genetics clinics at Massachusetts General Hospital who were undergoing planned genetic testing. Participants were randomized into two groups: standard-of-care genetic testing (SOC) only or SOC and cGS.

RESULTS

Two hundred four participants were enrolled, 202 were randomized to one of the intervention arms, and 99 received cGS. In total, cGS returned 16 molecular diagnoses that fully or partially explained the indication for testing in 16 individuals (16.2% of the cohort, 95% confidence interval [CI] 8.9-23.4%), which was not significantly different from SOC (18.2%, 95% CI 10.6-25.8%, P = 0.71). An additional eight molecular diagnoses reported by cGS had uncertain relevance to the participant's phenotype. Nevertheless, referring providers considered 20/24 total cGS molecular diagnoses (83%) to be explanatory for clinical features or worthy of additional workup.

CONCLUSION

cGS is technically suitable as a first genetic test. In our cohort, diagnostic yield was not significantly different from SOC. Further studies addressing other variant types and implementation challenges are needed to support feasibility and utility of broad-scale cGS adoption.

摘要

目的

评估临床基因组测序(cGS)作为疑似单基因疾病患者的首次基因检测的诊断收益和临床相关性。

方法

我们进行了一项前瞻性随机研究,纳入了在马萨诸塞州综合医院遗传诊所接受计划基因检测的儿科和成年患者。参与者被随机分为两组:仅接受标准护理基因检测(SOC)或 SOC 和 cGS。

结果

共纳入 204 名参与者,202 名随机分配至干预组之一,99 名接受了 cGS。cGS 共返回 16 个分子诊断结果,这些结果在 16 名个体中完全或部分解释了检测的指征(队列的 16.2%,95%置信区间[CI] 8.9-23.4%),与 SOC 无显著差异(18.2%,95%CI 10.6-25.8%,P=0.71)。cGS 报告的另外 8 个分子诊断与参与者的表型相关性不确定。尽管如此,参考医生认为 24 个 cGS 分子诊断中的 20 个(83%)对临床特征具有解释性或值得进一步检查。

结论

cGS 在技术上适合作为首次基因检测。在我们的队列中,诊断收益与 SOC 无显著差异。需要进一步研究其他变异类型和实施挑战,以支持广泛采用 cGS 的可行性和实用性。

相似文献

1
Randomized prospective evaluation of genome sequencing versus standard-of-care as a first molecular diagnostic test.
Genet Med. 2021 Sep;23(9):1689-1696. doi: 10.1038/s41436-021-01193-y. Epub 2021 May 11.
2
The impact of clinical genome sequencing in a global population with suspected rare genetic disease.
Am J Hum Genet. 2024 Jul 11;111(7):1271-1281. doi: 10.1016/j.ajhg.2024.05.006. Epub 2024 Jun 5.
3
Genome Sequencing as a Diagnostic Test in Children With Unexplained Medical Complexity.
JAMA Netw Open. 2020 Sep 1;3(9):e2018109. doi: 10.1001/jamanetworkopen.2020.18109.

引用本文的文献

2
Considerations for reporting variants in novel candidate genes identified during clinical genomic testing.
Genet Med. 2024 Oct;26(10):101199. doi: 10.1016/j.gim.2024.101199. Epub 2024 Jun 26.
4
Considerations for reporting variants in novel candidate genes identified during clinical genomic testing.
bioRxiv. 2024 Jun 21:2024.02.05.579012. doi: 10.1101/2024.02.05.579012.
5
Genome sequencing as a generic diagnostic strategy for rare disease.
Genome Med. 2024 Feb 14;16(1):32. doi: 10.1186/s13073-024-01301-y.
6
Integrated multi-omics for rapid rare disease diagnosis on a national scale.
Nat Med. 2023 Jul;29(7):1681-1691. doi: 10.1038/s41591-023-02401-9. Epub 2023 Jun 8.
9
2022 Curt Stern Award: Advancing genomic medicine through collaboration and data sharing.
Am J Hum Genet. 2023 Mar 2;110(3):410-413. doi: 10.1016/j.ajhg.2023.01.013.

本文引用的文献

1
Analysis of laboratory reporting practices using a quality assessment of a virtual patient.
Genet Med. 2021 Mar;23(3):562-570. doi: 10.1038/s41436-020-01015-7. Epub 2020 Oct 30.
2
NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020.
J Natl Compr Canc Netw. 2020 Apr;18(4):380-391. doi: 10.6004/jnccn.2020.0017.
3
Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data.
Genet Med. 2020 May;22(5):945-953. doi: 10.1038/s41436-020-0754-0. Epub 2020 Feb 18.
5
ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions.
Bioinformatics. 2019 Nov 1;35(22):4754-4756. doi: 10.1093/bioinformatics/btz431.
7
Clinical whole genome sequencing as a first-tier test at a resource-limited dysmorphology clinic in Mexico.
NPJ Genom Med. 2019 Feb 14;4:5. doi: 10.1038/s41525-018-0076-1. eCollection 2019.
9
High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia.
Cerebellum. 2019 Feb;18(1):137-146. doi: 10.1007/s12311-018-0969-7.
10
Clinical genome sequencing in an unbiased pediatric cohort.
Genet Med. 2019 Feb;21(2):303-310. doi: 10.1038/s41436-018-0075-8. Epub 2018 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验