Stock Michiel, Poisot Timothée, De Baets Bernard
Department of Data Analysis and Mathematical Modelling Ghent University Ghent Belgium.
Département de Sciences Biologiques Universitée de Montréal Montréal QC Canada.
Ecol Evol. 2021 Mar 22;11(9):3841-3855. doi: 10.1002/ece3.7254. eCollection 2021 May.
Observed biotic interactions between species, such as in pollination, predation, and competition, are determined by combinations of population densities, matching in functional traits and phenology among the organisms, and stochastic events (neutral effects).We propose optimal transportation theory as a unified view for modeling species interaction networks with different intensities of interactions. We pose the coupling of two distributions as a constrained optimization problem, maximizing both the system's average utility and its global entropy, that is, randomness. Our model follows naturally from applying the MaxEnt principle to this problem setting.This approach allows for simulating changes in species relative densities as well as to disentangle the impact of trait matching and neutral forces.We provide a framework for estimating the pairwise species utilities from data. Experimentally, we show how to use this framework to perform trait matching and predict the coupling in pollination and host-parasite networks.
观察到的物种间生物相互作用,如授粉、捕食和竞争,是由种群密度、生物体功能性状和物候匹配以及随机事件(中性效应)的组合决定的。我们提出最优运输理论作为一种统一观点,用于对具有不同相互作用强度的物种相互作用网络进行建模。我们将两个分布的耦合作为一个约束优化问题,最大化系统的平均效用及其全局熵,即随机性。我们的模型自然地源于将最大熵原理应用于此问题设置。这种方法允许模拟物种相对密度的变化,并厘清性状匹配和中性力量的影响。我们提供了一个从数据中估计成对物种效用的框架。在实验中,我们展示了如何使用这个框架进行性状匹配,并预测授粉和宿主-寄生虫网络中的耦合。