Am Nat. 2022 Jun;199(6):841-854. doi: 10.1086/714420. Epub 2022 Apr 13.
AbstractEcological interactions link species in networks. Loss of species from or introduction of new species into an existing network may have substantial effects for interaction patterns. Predicting changes in interaction frequency while allowing for rewiring of existing interactions-and hence estimating the consequences of community compositional changes-is thus a central challenge for network ecology. Interactions between species groups, such as pollinators and flowers or parasitoids and hosts, are moderated by matching morphological traits or sensory clues, most of which are unknown to us. If these traits are phylogenetically conserved, however, we can use phylogenetic distances to construct latent, surrogate traits and try to match those across groups, in addition to observed traits. Understanding how important traits and trait matching are, relative to abundances and chance, is crucial to estimating the fundamental predictability of network interactions. Here, we present a statistically sound approach ("tapnet") to fitting abundances, traits, and phylogeny to observed network data to predict interaction frequencies. We thereby expand existing approaches to quantitative bipartite networks, which so far have failed to correctly represent the nonindependence of network interactions. Furthermore, we use simulations and cross validation on independent data to evaluate the predictive power of the fit. Our results show that tapnet is on a par with abundance-only, matching centrality, and machine learning approaches. This approach also allows us to evaluate how well current concepts of trait matching work. On the basis of our results, we expect that interactions in well-sampled networks can be well predicted if traits and abundances are the main driver of interaction frequency.
摘要 生态相互作用将物种连接在网络中。物种的缺失或新物种的引入可能对相互作用模式产生重大影响。因此,预测相互作用频率的变化,同时允许现有相互作用的重新布线,从而估计群落组成变化的后果,是网络生态学的一个核心挑战。物种群体之间的相互作用,如传粉者和花或寄生蜂和宿主之间的相互作用,受到形态特征或感官线索的匹配调节,而这些特征大多数我们并不了解。然而,如果这些特征在系统发育上是保守的,我们可以使用系统发育距离来构建潜在的、替代的特征,并尝试在不同的群体之间匹配这些特征,而不仅仅是观察到的特征。了解重要特征和特征匹配相对于丰度和偶然性的重要性,对于估计网络相互作用的基本可预测性至关重要。在这里,我们提出了一种统计上合理的方法(“tapnet”),将丰度、特征和系统发育拟合到观察到的网络数据中,以预测相互作用频率。由此,我们扩展了现有的定量二分网络方法,这些方法迄今为止未能正确表示网络相互作用的非独立性。此外,我们使用独立数据进行模拟和交叉验证来评估拟合的预测能力。我们的结果表明,tapnet 与仅基于丰度、匹配中心性和机器学习方法相当。这种方法还允许我们评估当前特征匹配概念的工作效果如何。基于我们的结果,如果特征和丰度是相互作用频率的主要驱动因素,那么在采样良好的网络中,相互作用可以得到很好的预测。