Suppr超能文献

公民科学照片中的颜色数据对生物多样性研究是否可靠?

Is color data from citizen science photographs reliable for biodiversity research?

作者信息

Laitly Alexandra, Callaghan Corey T, Delhey Kaspar, Cornwell William K

机构信息

Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia.

Max Planck Institute for Ornithology Seewiesen Germany.

出版信息

Ecol Evol. 2021 Mar 30;11(9):4071-4083. doi: 10.1002/ece3.7307. eCollection 2021 May.

Abstract

Color research continuously demands better methods and larger sample sizes. Citizen science (CS) projects are producing an ever-growing geo- and time-referenced set of photographs of organisms. These datasets have the potential to make a huge contribution to color research, but the reliability of these data need to be tested before widespread implementation.We compared the difference between color extracted from CS photographs with that of color extracted from controlled lighting conditions (i.e., the current gold standard in spectrometry) for both birds and plants. First, we tested the ability of CS photographs to quantify interspecific variability by assessing > 9,000 CS photographs of 537 Australian bird species with controlled museum spectrometry data. Second, we tested the ability of CS photographs to quantify intraspecific variability by measuring petal color data for two plant species using seven methods/sources with varying levels of control.For interspecific questions, we found that by averaging out variability through a large sample size, CS photographs capture a large proportion of across species variation in plumage color within the visual part of the spectrum (  = 0.68-0.71 for RGB space and 0.72-0.77 for CIE-LAB space). Between 12 and 14 photographs per species are necessary to achieve this averaging effect for interspecific studies. Unsurprisingly, the CS photographs taken with commercial cameras failed to capture information in the UV part of the spectrum. For intraspecific questions, decreasing levels of control increase the color variation but averaging larger sample sizes can partially mitigate this, aside from particular issues related to saturation and irregularities in light capture.CS photographs offer a very large sample size across space and time which offers statistical power for many color research questions. This study shows that CS photographs contain data that lines up closely with controlled measurements within the visual spectrum if the sample size is large enough, highlighting the potential of CS photographs for both interspecific and intraspecific ecological or biological questions. With regard to analyzing color in CS photographs, we suggest, as a starting point, to measure multiple random points within the ROI of each photograph for both patterned and unpatterned patches and approach the recommended sample size of 12-14 photographs per species for interspecific studies. Overall, this study provides groundwork in analyzing the reliability of a novel method, which can propel the field of studying color forward.

摘要

色彩研究一直需要更好的方法和更大的样本量。公民科学(CS)项目正在生成数量不断增加的带有地理和时间参考的生物照片集。这些数据集有潜力为色彩研究做出巨大贡献,但在广泛应用之前,需要对这些数据的可靠性进行测试。我们比较了从CS照片中提取的颜色与在受控光照条件下(即光谱分析中的当前黄金标准)提取的鸟类和植物颜色之间的差异。首先,我们通过评估537种澳大利亚鸟类的9000多张CS照片与受控的博物馆光谱数据,测试了CS照片量化种间变异性的能力。其次,我们使用七种控制水平不同的方法/来源,通过测量两种植物的花瓣颜色数据,测试了CS照片量化种内变异性的能力。对于种间问题,我们发现通过大样本量平均变异性,CS照片在光谱的视觉部分捕捉到了很大比例的鸟类羽毛颜色的种间差异(RGB空间中为0.68 - 0.71,CIE - LAB空间中为0.72 - 0.77)。对于种间研究,每个物种需要12至14张照片才能实现这种平均效果。不出所料,用商业相机拍摄的CS照片未能捕捉到光谱紫外线部分的信息。对于种内问题,控制水平的降低会增加颜色变化,但除了与饱和度和光捕获不规则性相关的特定问题外,对更大样本量进行平均可以部分缓解这种情况。CS照片在空间和时间上提供了非常大的样本量,为许多色彩研究问题提供了统计能力。这项研究表明,如果样本量足够大,CS照片包含的数据与视觉光谱内的受控测量结果非常吻合,突出了CS照片在种间和种内生态或生物学问题研究中的潜力。关于分析CS照片中的颜色,我们建议,作为起点,对于有图案和无图案的斑块,在每张照片的感兴趣区域内测量多个随机点,并针对种间研究采用每个物种12 - 14张照片的推荐样本量。总体而言,这项研究为分析一种新方法的可靠性奠定了基础,这可以推动色彩研究领域向前发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b30/8093748/98b6ce4e33d1/ECE3-11-4071-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验