Perez-Udell Rachel A, Udell Andrew T, Chang Shu-Mei
Department of Plant Biology University of Georgia 2502 Miller Plant Science, 120 Carlton St. Athens Georgia 30602 USA.
Appl Plant Sci. 2023 Jan 16;11(1):e11505. doi: 10.1002/aps3.11505. eCollection 2023 Jan-Feb.
Petal color is an ecologically important trait, and uncovering color variation over a geographic range, particularly in species with large distributions and/or short bloom times, requires extensive fieldwork. We have developed an alternative method that segments images from citizen science repositories using Python and -means clustering in the hue-saturation-value (HSV) color space.
Our method uses -means clustering to aggregate like-color pixels in sample images to generate the HSV color space encapsulating the color range of petals. Using the HSV values, our method isolates photographs containing clusters in that range and bins them into a classification scheme based on user-defined categories.
We demonstrate the application of this method using two species: one with a continuous range of variation of pink-purple petals in , and one with a binary classification of white versus blue in . We demonstrate results that are repeatable and accurate.
This method provides a flexible, robust, and easily adjustable approach for the classification of color images from citizen science repositories. By using color to classify images, this pipeline sidesteps many of the issues encountered using more traditional computer vision applications. This approach provides a tool for making use of large citizen scientist data sets.
花瓣颜色是一个具有重要生态意义的性状,要揭示其在地理范围内的颜色变化,尤其是对于分布广泛和/或花期短暂的物种,需要进行大量的实地调查。我们开发了一种替代方法,该方法使用Python和色相 - 饱和度 - 值(HSV)颜色空间中的K均值聚类对公民科学知识库中的图像进行分割。
我们的方法使用K均值聚类对样本图像中颜色相似的像素进行聚合,以生成封装花瓣颜色范围的HSV颜色空间。利用HSV值,我们的方法分离出该范围内包含聚类的照片,并根据用户定义的类别将它们分类。
我们使用两个物种展示了该方法的应用:一个物种在[具体范围]内花瓣颜色有从粉紫色到紫色的连续变化,另一个物种在[具体范围]内花瓣颜色分为白色和蓝色两类。我们展示了可重复且准确的结果。
该方法为公民科学知识库中的彩色图像分类提供了一种灵活、稳健且易于调整的方法。通过使用颜色对图像进行分类,此流程避免了许多使用更传统计算机视觉应用时遇到的问题。这种方法为利用大量公民科学家数据集提供了一种工具。