State Key Laboratory of Microbial Resources and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering Institute of Microbiology Chinese Academy of Sciences Beijing 100101 P. R. China.
University of Chinese Academy of Sciences Beijing 100049 China.
Adv Sci (Weinh). 2021 Mar 1;8(9):2004632. doi: 10.1002/advs.202004632. eCollection 2021 May.
Nicotinamide adenine dinucleotide (NAD) is a life essential molecule involved in versatile biological processes. To date, only two de novo biosynthetic routes to NAD are described, both of which start from a proteinogenic amino acid and are tightly controlled. Here, a de novo quinolinic acid pathway starting from chorismate, which provides an alternative route (named as the C3N pathway) to NAD biosynthesis, is established. Significantly, the C3N pathway yields extremely high cellular concentrations of NAD(H) in . Its utility in cofactor engineering is demonstrated by introducing the four-gene C3N module to cell factories to achieve higher production of 2,5-dimethylpyrazine and develop an efficient C3N-based whole-cell bioconversion system for preparing chiral amines. The wide distribution and abundance of chorismate in most kingdoms of life implies a general utility of the C3N pathway for modulating cellular levels of NAD(H) in versatile organisms.
烟酰胺腺嘌呤二核苷酸(NAD)是一种生命必需的分子,参与多种生物过程。迄今为止,仅描述了两种从头生物合成 NAD 的途径,这两种途径都从一种蛋白质氨基酸开始,并受到严格控制。在这里,建立了一种从分支酸开始的从头喹啉酸途径,为 NAD 生物合成提供了另一种途径(称为 C3N 途径)。重要的是,C3N 途径在. 中产生极高浓度的 NAD(H)。通过将四基因 C3N 模块引入细胞工厂来实现 2,5-二甲基吡嗪的更高产量,并开发出一种基于 C3N 的高效全细胞生物转化系统来制备手性胺,证明了其在辅助因子工程中的应用。分支酸在生命的大多数王国中的广泛分布和丰富性意味着 C3N 途径在各种生物体中用于调节 NAD(H)细胞水平具有普遍的用途。