Zhang Ling, Jiang Ke, Yang Lifeng, Li Libo, Hu Enlai, Yang Ling, Shao Kai, Xing Huabin, Cui Yuanjing, Yang Yu, Li Bin, Chen Banglin, Qian Guodong
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China.
College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China.
Angew Chem Int Ed Engl. 2021 Jul 12;60(29):15995-16002. doi: 10.1002/anie.202102810. Epub 2021 Jun 14.
Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (Cu @UiO-66-(COOH) ) to achieve ultrahigh C H /CO separation selectivity. The anchored Cu ions on the pore surfaces can specifically and strongly interact with C H molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C H at low-pressure region, while effectively reduce CO uptake due to the small pore sizes. This material thus exhibits the record high C H /CO selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between Cu and C H mainly contributes to the ultra-strong C H binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C H /CO gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C H over CO .
由于乙炔和二氧化碳的分子尺寸和物理性质非常相似,从二氧化碳中分离乙炔仍然是一项艰巨的挑战。我们在此报告了首例在超微孔金属有机框架(Cu@UiO-66-(COOH))中使用铜(I)-炔基化学实现超高的C₂H₂/CO₂分离选择性。孔表面锚定的铜离子可通过铜(I)-炔基π络合与C₂H₂分子发生特异性且强烈的相互作用,从而在低压区域快速吸附大量C₂H₂,同时由于孔径较小有效降低了CO₂的吸附量。因此,这种材料在环境条件下展现出创纪录的185的高C₂H₂/CO₂选择性,显著高于之前的基准材料ZJU-74a(36.5)和ATC-Cu(53.6)。理论计算表明,铜与C₂H₂之间独特的π络合主要促成了超强的C₂H₂结合亲和力和创纪录的选择性。C₂H₂/CO₂气体混合物的突破实验证明了这种卓越的分离性能。这项工作为用铜(I)-炔基化学对金属有机框架进行功能化以实现C₂H₂相对于CO₂的高选择性分离提供了新的视角。