School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Lab Chip. 2021 Jun 15;21(12):2359-2371. doi: 10.1039/d1lc00131k.
Mechanistic understanding of atherosclerosis is largely hampered by the lack of a suitable in vitro human arterial model that recapitulates the arterial wall structure, and the interplay between different cell types and the surrounding extracellular matrix (ECM). This work introduces a novel microfluidic endothelial cell (EC)-smooth muscle cell (SMC) 3D co-culture platform that replicates the structural and biological aspects of the human arterial wall for modeling early atherosclerosis. Using a modified surface tension-based ECM patterning method, we established a well-defined intima-media-like structure, and identified an ECM composition (collagen I and Matrigel mixture) that retains the SMCs in a quiescent and aligned state, characteristic of a healthy artery. Endothelial stimulation with cytokines (IL-1β and TNFα) and oxidized low-density lipoprotein (oxLDL) was performed on-chip to study various early atherogenic events including endothelial inflammation (ICAM-1 expression), EC/SMC oxLDL uptake, SMC migration, and monocyte-EC adhesion. As a proof-of-concept for drug screening applications, we demonstrated the atheroprotective effects of vitamin D (1,25(OH)2D3) and metformin in mitigating cytokine-induced monocyte-EC adhesion and SMC migration. Overall, the developed arterial wall model facilitates quantitative and multi-factorial studies of EC and SMC phenotype in an atherogenic environment, and can be readily used as a platform technology to reconstitute multi-layered ECM tissue biointerfaces.
动脉粥样硬化的机制理解在很大程度上受到缺乏合适的体外人动脉模型的阻碍,该模型能够再现动脉壁结构以及不同细胞类型和周围细胞外基质(ECM)之间的相互作用。本工作介绍了一种新颖的微血管内皮细胞(EC)-平滑肌细胞(SMC)3D 共培养平台,可模拟人动脉壁的结构和生物学方面,用于早期动脉粥样硬化建模。使用改良的基于表面张力的 ECM 图案化方法,我们建立了一个明确的内-中膜样结构,并确定了一种 ECM 组成(胶原 I 和 Matrigel 混合物),可使 SMC 保持静止和对齐状态,这是健康动脉的特征。在芯片上用细胞因子(IL-1β 和 TNFα)和氧化低密度脂蛋白(oxLDL)刺激内皮细胞,研究各种早期动脉粥样硬化事件,包括内皮炎症(ICAM-1 表达)、EC/SMC oxLDL 摄取、SMC 迁移和单核细胞-EC 黏附。作为药物筛选应用的概念验证,我们证明了维生素 D(1,25(OH)2D3)和二甲双胍在减轻细胞因子诱导的单核细胞-EC 黏附和 SMC 迁移方面的抗动脉粥样硬化作用。总之,开发的动脉壁模型促进了在动脉粥样硬化环境中对 EC 和 SMC 表型的定量和多因素研究,并且可以作为一种平台技术,重新构建多层 ECM 组织生物界面。