Suppr超能文献

FDDH:用于大规模跨模态检索的快速判别离散哈希算法

FDDH: Fast Discriminative Discrete Hashing for Large-Scale Cross-Modal Retrieval.

作者信息

Liu Xin, Wang Xingzhi, Cheung Yiu-Ming

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6306-6320. doi: 10.1109/TNNLS.2021.3076684. Epub 2022 Oct 27.

Abstract

Cross-modal hashing, favored for its effectiveness and efficiency, has received wide attention to facilitating efficient retrieval across different modalities. Nevertheless, most existing methods do not sufficiently exploit the discriminative power of semantic information when learning the hash codes while often involving time-consuming training procedure for handling the large-scale dataset. To tackle these issues, we formulate the learning of similarity-preserving hash codes in terms of orthogonally rotating the semantic data, so as to minimize the quantization loss of mapping such data to hamming space and propose an efficient fast discriminative discrete hashing (FDDH) approach for large-scale cross-modal retrieval. More specifically, FDDH introduces an orthogonal basis to regress the targeted hash codes of training examples to their corresponding semantic labels and utilizes the ε -dragging technique to provide provable large semantic margins. Accordingly, the discriminative power of semantic information can be explicitly captured and maximized. Moreover, an orthogonal transformation scheme is further proposed to map the nonlinear embedding data into the semantic subspace, which can well guarantee the semantic consistency between the data feature and its semantic representation. Consequently, an efficient closed-form solution is derived for discriminative hash code learning, which is very computationally efficient. In addition, an effective and stable online learning strategy is presented for optimizing modality-specific projection functions, featuring adaptivity to different training sizes and streaming data. The proposed FDDH approach theoretically approximates the bi-Lipschitz continuity, runs sufficiently fast, and also significantly improves the retrieval performance over the state-of-the-art methods. The source code is released at https://github.com/starxliu/FDDH.

摘要

跨模态哈希因其有效性和效率而受到青睐,在促进跨不同模态的高效检索方面受到了广泛关注。然而,大多数现有方法在学习哈希码时没有充分利用语义信息的判别能力,同时在处理大规模数据集时往往涉及耗时的训练过程。为了解决这些问题,我们通过对语义数据进行正交旋转来制定相似性保持哈希码的学习方法,以最小化将此类数据映射到汉明空间的量化损失,并提出一种用于大规模跨模态检索的高效快速判别离散哈希(FDDH)方法。更具体地说,FDDH引入了一个正交基,将训练示例的目标哈希码回归到其相应的语义标签,并利用ε-拖动技术提供可证明的大语义边界。因此,可以明确捕获并最大化语义信息的判别能力。此外,还进一步提出了一种正交变换方案,将非线性嵌入数据映射到语义子空间,这可以很好地保证数据特征与其语义表示之间的语义一致性。因此,推导出了一种用于判别哈希码学习的高效闭式解,其计算效率非常高。此外,还提出了一种有效且稳定的在线学习策略,用于优化特定模态的投影函数,具有对不同训练大小和流数据的适应性。所提出的FDDH方法在理论上近似双李普希茨连续性,运行速度足够快,并且在检索性能上也比现有方法有显著提高。源代码可在https://github.com/starxliu/FDDH上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验