Qin Jianyang, Fei Lunke, Zhang Zheng, Wen Jie, Xu Yong, Zhang David
IEEE Trans Image Process. 2022;31:5343-5358. doi: 10.1109/TIP.2022.3195059. Epub 2022 Aug 16.
With the dramatic increase in the amount of multimedia data, cross-modal similarity retrieval has become one of the most popular yet challenging problems. Hashing offers a promising solution for large-scale cross-modal data searching by embedding the high-dimensional data into the low-dimensional similarity preserving Hamming space. However, most existing cross-modal hashing usually seeks a semantic representation shared by multiple modalities, which cannot fully preserve and fuse the discriminative modal-specific features and heterogeneous similarity for cross-modal similarity searching. In this paper, we propose a joint specifics and consistency hash learning method for cross-modal retrieval. Specifically, we introduce an asymmetric learning framework to fully exploit the label information for discriminative hash code learning, where 1) each individual modality can be better converted into a meaningful subspace with specific information, 2) multiple subspaces are semantically connected to capture consistent information, and 3) the integration complexity of different subspaces is overcome so that the learned collaborative binary codes can merge the specifics with consistency. Then, we introduce an alternatively iterative optimization to tackle the specifics and consistency hashing learning problem, making it scalable for large-scale cross-modal retrieval. Extensive experiments on five widely used benchmark databases clearly demonstrate the effectiveness and efficiency of our proposed method on both one-cross-one and one-cross-two retrieval tasks.
随着多媒体数据量的急剧增加,跨模态相似性检索已成为最热门但也最具挑战性的问题之一。哈希通过将高维数据嵌入到低维的保持相似性的汉明空间中,为大规模跨模态数据搜索提供了一种很有前景的解决方案。然而,大多数现有的跨模态哈希通常寻求多种模态共享的语义表示,这无法充分保留和融合用于跨模态相似性搜索的判别性模态特定特征和异构相似性。在本文中,我们提出了一种用于跨模态检索的联合特异性和一致性哈希学习方法。具体来说,我们引入了一个非对称学习框架来充分利用标签信息进行判别性哈希码学习,其中:1)每个单独的模态可以更好地转换为具有特定信息的有意义子空间;2)多个子空间在语义上相互连接以捕获一致信息;3)克服了不同子空间的集成复杂性,以便学习到的协作二进制码能够将特异性与一致性融合起来。然后,我们引入了一种交替迭代优化方法来解决特异性和一致性哈希学习问题,使其能够扩展到大规模跨模态检索。在五个广泛使用的基准数据库上进行的大量实验清楚地证明了我们提出的方法在单对单和单对二检索任务上的有效性和效率。