Deal Alexandra M, Rapf Rebecca J, Vaida Veronica
Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States.
J Phys Chem A. 2021 Jun 17;125(23):4929-4942. doi: 10.1021/acs.jpca.1c02864. Epub 2021 May 12.
The asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis. We discuss recent evidence that (1) water-air interfaces promote condensation reactions including peptide synthesis, phosphorylation, and oligomerization; (2) photochemistry at water-air interfaces may have been a significant source of prebiotic molecular complexity, given the lack of oxygen and increased availability of near-ultraviolet radiation on early Earth; and (3) water-air interfaces can promote spontaneous reduction and oxidation reactions, potentially providing protometabolic pathways. Life likely began within a relatively short time frame, and water-air interfaces offer promising environments for simultaneous and efficient biomolecule production.
不对称的水 - 空气界面提供了一个动态的水环境,其性质往往与大量水相或气相有很大不同,并促进了在大量水中热力学、动力学或其他方面不利的反应。前生物化学面临一个关键挑战:水是生命所必需的,但却降低了许多生物分子合成反应的效率。本文认为水 - 空气界面是无生命合成的有利反应环境。我们讨论了最近的证据,即(1)水 - 空气界面促进缩合反应,包括肽合成、磷酸化和寡聚化;(2)鉴于早期地球上缺乏氧气且近紫外辐射的可利用性增加,水 - 空气界面的光化学可能是前生物分子复杂性的重要来源;(3)水 - 空气界面可以促进自发的氧化还原反应,潜在地提供原始代谢途径。生命可能在相对较短的时间内开始,而水 - 空气界面为同时高效地产生生物分子提供了有前景的环境。