Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich, Germany.
Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing, Brussels, Belgium.
Nature. 2021 May;593(7858):233-237. doi: 10.1038/s41586-021-03462-x. Epub 2021 May 12.
Atmospheric acidity is increasingly determined by carbon dioxide and organic acids. Among the latter, formic acid facilitates the nucleation of cloud droplets and contributes to the acidity of clouds and rainwater. At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.
大气酸度越来越受到二氧化碳和有机酸的影响。在后者中,甲酸促进了云滴的成核作用,并导致云和气溶胶雨水呈酸性。目前,化学-气候模型大大低估了大气中甲酸的含量,因为其来源和汇的关键过程仍未被充分了解。在这里,我们展示了大气室实验,表明甲醛通过涉及其水合形式甲二醇的多相途径,可有效地转化为气态甲酸。在温暖的云滴中,甲二醇迅速逸出气体,但缓慢脱水。使用一个化学-气候模型,我们估计甲二醇的气相氧化产生的甲酸比所有其他已知化学源的总和还要多四倍。我们的发现协调了模型预测和甲酸丰度的测量结果。额外的甲酸负担通过降低云和气溶胶雨水的 pH 值,增加了大气酸度,最多可达 0.3。本文提出的二醇机制可能适用于其他醛类,并且可能有助于解释影响气溶胶生长和云演化的其他有机酸的高大气水平。