Suppr超能文献

重复测量研究中超声与实验室甲状腺测量的变异性

Variability of Thyroid Measurements from Ultrasound and Laboratory in a Repeated Measurements Study.

作者信息

Ittermann Till, Richter Adrian, Junge Martin, Nauck Matthias, Petersmann Astrid, Jürgens Clemens, Below Harald, Schmidt Carsten Oliver, Völzke Henry

机构信息

Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

German Rheumatism Research Center, Berlin, Germany.

出版信息

Eur Thyroid J. 2021 Apr;10(2):140-149. doi: 10.1159/000507018. Epub 2020 May 5.

Abstract

BACKGROUND

Variability of measurements in medical research can be due to different sources. Quantification of measurement errors facilitates probabilistic sensitivity analyses in future research to minimize potential bias in epidemiological studies. We aimed to investigate the variation of thyroid-related outcomes derived from ultrasound (US) and laboratory analyses in a repeated measurements study.

SUBJECTS AND METHODS

Twenty-five volunteers (13 females, 12 males) aged 22-70 years were examined once a month over 1 year. US measurements included thyroid volume, goiter, and thyroid nodules. Laboratory measurements included urinary iodine concentrations and serum levels of thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), and thyroglobulin. Variations in continuous thyroid markers were assessed as coefficient of variation (CV) defined as mean of the individual CVs with bootstrapped confidence intervals and as intraclass correlation coefficients (ICCs). Variations in dichotomous thyroid markers were assessed by Cohen's kappa.

RESULTS

CV was highest for urinary iodine concentrations (56.9%), followed by TSH (27.2%), thyroglobulin (18.2%), thyroid volume (10.5%), fT3 (8.1%), and fT4 (6.3%). The ICC was lowest for urinary iodine concentrations (0.42), followed by fT3 (0.55), TSH (0.64), fT4 (0.72), thyroid volume (0.87), and thyroglobulin (0.90). Cohen's kappa values for the presence of goiter or thyroid nodules were 0.64 and 0.70, respectively.

CONCLUSION

Our study provides measures of variation for thyroid outcomes, which can be used for probabilistic sensitivity analyses of epidemiological data. The low intraindividual variation of serum thyroglobulin in comparison to urinary iodine concentrations emphasizes the potential of thyroglobulin as marker for the iodine status of populations.

摘要

背景

医学研究中测量值的变异性可能源于不同的来源。测量误差的量化有助于未来研究中的概率敏感性分析,以尽量减少流行病学研究中的潜在偏差。我们旨在通过一项重复测量研究,调查超声(US)和实验室分析得出的甲状腺相关结果的变异性。

受试者与方法

25名年龄在22 - 70岁之间的志愿者(13名女性,12名男性)在1年的时间里每月接受一次检查。超声测量包括甲状腺体积、甲状腺肿和甲状腺结节。实验室测量包括尿碘浓度以及促甲状腺激素(TSH)、游离三碘甲状腺原氨酸(fT3)、游离甲状腺素(fT4)和甲状腺球蛋白的血清水平。连续甲状腺标志物的变异性通过变异系数(CV)进行评估,变异系数定义为个体变异系数的均值,并带有自抽样置信区间,同时还通过组内相关系数(ICC)进行评估。二分甲状腺标志物的变异性通过科恩kappa系数进行评估。

结果

尿碘浓度的变异系数最高(56.9%),其次是促甲状腺激素(27.2%)、甲状腺球蛋白(18.2%)、甲状腺体积(10.5%)、游离三碘甲状腺原氨酸(8.1%)和游离甲状腺素(6.3%)。组内相关系数在尿碘浓度方面最低(0.42),其次是游离三碘甲状腺原氨酸(0.55)、促甲状腺激素(0.64)、游离甲状腺素(0.72)、甲状腺体积(0.87)和甲状腺球蛋白(0.90)。甲状腺肿或甲状腺结节存在情况的科恩kappa值分别为0.64和0.70。

结论

我们的研究提供了甲状腺相关结果的变异测量方法,可用于流行病学数据的概率敏感性分析。与尿碘浓度相比,血清甲状腺球蛋白的个体内变异较低,这凸显了甲状腺球蛋白作为人群碘状态标志物的潜力。

相似文献

1
Variability of Thyroid Measurements from Ultrasound and Laboratory in a Repeated Measurements Study.
Eur Thyroid J. 2021 Apr;10(2):140-149. doi: 10.1159/000507018. Epub 2020 May 5.
3
Arsenic in seafood is associated with increased thyroid-stimulating hormone (TSH) in healthy volunteers - A randomized controlled trial.
J Trace Elem Med Biol. 2017 Dec;44:1-7. doi: 10.1016/j.jtemb.2017.05.004. Epub 2017 May 13.
4
URINARY IODINE CONCENTRATION IS INVERSELY ASSOCIATED WITH THYROGLOBULIN ANTIBODIES.
Endocr Pract. 2019 May;25(5):454-460. doi: 10.4158/EP-2018-0252. Epub 2019 Jan 18.
5
Sensitivity of iodine deficiency indicators and iodine status in Turkey.
J Pediatr Endocrinol Metab. 2003 Feb;16(2):197-202. doi: 10.1515/jpem.2003.16.2.197.
8
Goitrogenesis during pregnancy and neonatal hypothyroxinaemia in a borderline iodine sufficient area.
Clin Endocrinol (Oxf). 2000 Dec;53(6):725-731. doi: 10.1046/j.1365-2265.2000.01156.x.
10
Thyroid status of iodine deficient newborn infants living in central region of Turkey: a pilot study.
World J Pediatr. 2017 Oct;13(5):479-484. doi: 10.1007/s12519-017-0017-6. Epub 2017 Feb 14.

本文引用的文献

2
Interlaboratory variability of urinary iodine measurements.
Clin Chem Lab Med. 2018 Feb 23;56(3):441-447. doi: 10.1515/cclm-2017-0580.
3
The sensitivity and specificity of thyroglobulin concentration using repeated measures of urinary iodine excretion.
Eur J Nutr. 2018 Jun;57(4):1313-1320. doi: 10.1007/s00394-017-1410-6. Epub 2017 Mar 11.
5
Monitoring the prevalence of thyroid disorders in the adult population of Northeast Germany.
Popul Health Metr. 2016 Nov 8;14:39. doi: 10.1186/s12963-016-0111-3. eCollection 2016.
6
Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status.
Am J Clin Nutr. 2016 Sep;104 Suppl 3(Suppl 3):898S-901S. doi: 10.3945/ajcn.115.110395. Epub 2016 Aug 17.
9
Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: free thyroxine and free triiodothyronine.
Clin Chem. 2010 Jun;56(6):912-20. doi: 10.1373/clinchem.2009.140194. Epub 2010 Apr 15.
10
Cohort profile: the study of health in Pomerania.
Int J Epidemiol. 2011 Apr;40(2):294-307. doi: 10.1093/ije/dyp394. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验