Suppr超能文献

基于可变窗口的差分隐私电动汽车充电数据发布

Differential privacy EV charging data release based on variable window.

作者信息

Qiu Rixuan, Liu Xiong, Huang Rong, Zheng Fuyong, Liang Liang, Li Yuancheng

机构信息

State Grid Jiangxi Information & Telecommunication Company, Nanchang, Jiangxi, China.

School of Control and Computer Engineering, North China Electric Power University, Beijing, Beijing, China.

出版信息

PeerJ Comput Sci. 2021 Apr 22;7:e481. doi: 10.7717/peerj-cs.481. eCollection 2021.

Abstract

In the V2G network, the release and sharing of real-time data are of great value for data mining. However, publishing these data directly to service providers may reveal the privacy of users. Therefore, it is necessary that the data release model with a privacy protection mechanism protects user privacy in the case of data utility. In this paper, we propose a privacy protection mechanism based on differential privacy to protect the release of data in V2G networks. To improve the utility of the data, we define a variable sliding window, which can dynamically and adaptively adjust the size according to the data. Besides, to allocate the privacy budget reasonably in the variable window, we consider the sampling interval and the proportion of the window. Through experimental analysis on real data sets, and comparison with two representative w event privacy protection methods, we prove that the method in this paper is superior to the existing schemes and improves the utility of the data.

摘要

在车到电网(V2G)网络中,实时数据的发布与共享对数据挖掘具有重要价值。然而,将这些数据直接发布给服务提供商可能会泄露用户隐私。因此,具备隐私保护机制的数据发布模型有必要在保证数据效用的情况下保护用户隐私。在本文中,我们提出一种基于差分隐私的隐私保护机制,以保护V2G网络中的数据发布。为提高数据效用,我们定义了一个可变滑动窗口,它可以根据数据动态且自适应地调整大小。此外,为在可变窗口中合理分配隐私预算,我们考虑了采样间隔和窗口比例。通过对真实数据集进行实验分析,并与两种具有代表性的事件隐私保护方法进行比较,我们证明本文方法优于现有方案,并提高了数据效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验