Suppr超能文献

基于精细化贝叶斯网络的高维感知数据局部差分隐私保护

Local Differential Privacy Protection of High-Dimensional Perceptual Data by the Refined Bayes Network.

机构信息

Department of Modern Business Research Center, Zhejiang Gongshang University, Hangzhou 310018, China.

School of Management Science & Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2020 Apr 29;20(9):2516. doi: 10.3390/s20092516.

Abstract

Although the Crowd-Sensing perception system brings great data value to people through the release and analysis of high-dimensional perception data, it causes great hidden danger to the privacy of participants in the meantime. Currently, various privacy protection methods based on differential privacy have been proposed, but most of them cannot simultaneously solve the complex attribute association problem between high-dimensional perception data and the privacy threat problems from untrustworthy servers. To address this problem, we put forward a local privacy protection based on Bayes network for high-dimensional perceptual data in this paper. This mechanism realizes the local data protection of the users at the very beginning, eliminates the possibility of other parties directly accessing the user's original data, and fundamentally protects the user's data privacy. During this process, after receiving the data of the user's local privacy protection, the perception server recognizes the dimensional correlation of the high-dimensional data based on the Bayes network, divides the high-dimensional data attribute set into multiple relatively independent low-dimensional attribute sets, and then sequentially synthesizes the new dataset. It can effectively retain the attribute dimension correlation of the original perception data, and ensure that the synthetic dataset and the original dataset have as similar statistical characteristics as possible. To verify its effectiveness, we conduct a multitude of simulation experiments. Results have shown that the synthetic data of this mechanism under the effective local privacy protection has relatively high data utility.

摘要

虽然众包感知系统通过发布和分析高维感知数据为人们带来了巨大的数据价值,但同时也给参与者的隐私带来了极大的隐患。目前,已经提出了各种基于差分隐私的隐私保护方法,但大多数方法都不能同时解决高维感知数据之间复杂的属性关联问题以及来自不可信服务器的隐私威胁问题。针对这个问题,我们在本文中提出了一种基于贝叶斯网络的高维感知数据局部隐私保护机制。该机制从用户端就实现了数据的局部保护,杜绝了其他方直接访问用户原始数据的可能性,从根本上保护了用户的数据隐私。在此过程中,感知服务器在接收到用户的本地隐私保护数据后,基于贝叶斯网络识别高维数据的维度相关性,将高维数据属性集划分为多个相对独立的低维属性集,然后依次合成新的数据集。它可以有效地保留原始感知数据的属性维度相关性,确保合成数据集和原始数据集具有尽可能相似的统计特征。为了验证其有效性,我们进行了大量的模拟实验。结果表明,该机制在有效本地隐私保护下生成的合成数据具有较高的数据效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/231d/7248995/eb880ec02de5/sensors-20-02516-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验