Suppr超能文献

还原氧化石墨烯和氮掺杂还原氧化石墨烯中电荷存储的电化学拉曼研究

electrochemical Raman investigation of charge storage in rGO and N-doped rGO.

作者信息

Yadav Rohit, Joshi Prerna, Hara Masanori, Yoshimura Masamichi

机构信息

Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan.

出版信息

Phys Chem Chem Phys. 2021 May 26;23(20):11789-11796. doi: 10.1039/d1cp00248a.

Abstract

In this study, in situ electrochemical Raman spectroscopy was applied to clarify the charge storage mechanism in three types of anodes, synthetic graphite, reduced graphene oxide (rGO), and nitrogen-doped reduced graphene oxide (N-rGO). The Li+ intercalation phenomenon was measured in LiPF6 electrolyte solution using a modified coin cell setup. The synthetic graphite anode showed the splitting of the G peak at the potential E < 0.2 V vs. Li/Li+, corresponding to the formation of a graphite intercalation compound (GIC) and its second-order 2D peak was found to be red-shifted due to charge transfer and induced strain in the potential region of 0.5 to 0.15 V vs. Li/Li+. In the case of rGO, the lattice defects assisted in large and early intercalation of electrolyte ions, which is confirmed by the red-shift in the G peak (∼36 cm-1) and its early disappearance below 0.3 V vs. Li/Li+, respectively. Unlike rGO, nitrogen vacancies in N-rGO provide active sites for Li+ intercalation, resulting in enhanced charge transfer, displayed by the large red-shift in the G peak (∼55 cm-1) and blue-shift in the D peak. In addition, a new Raman peak at 1850 cm-1 was observed in N-rGO for the first time, corresponding to the formation of a reversible intermediate species from the interaction between Li+ and nitrogen vacancies. This work demonstrates the use of a simple in situ technique to get insight into the nano-carbon electrodes during device operation and to reveal the role of doped nitrogen atoms for Li+ intercalation.

摘要

在本研究中,采用原位电化学拉曼光谱法来阐明三种类型阳极(合成石墨、还原氧化石墨烯(rGO)和氮掺杂还原氧化石墨烯(N-rGO))中的电荷存储机制。使用改进的扣式电池装置在LiPF6电解液中测量Li+嵌入现象。合成石墨阳极在相对于Li/Li+的电位E < 0.2 V时出现G峰分裂,这对应于石墨插层化合物(GIC)的形成,并且发现其二阶2D峰在相对于Li/Li+的0.5至0.15 V电位区域中由于电荷转移和诱导应变而发生红移。对于rGO,晶格缺陷有助于电解质离子的大量早期嵌入,这分别通过G峰的红移(约36 cm-1)及其在相对于Li/Li+低于0.3 V时的早期消失得到证实。与rGO不同,N-rGO中的氮空位为Li+嵌入提供了活性位点,导致电荷转移增强,表现为G峰的大红移(约55 cm-1)和D峰的蓝移。此外,首次在N-rGO中观察到1850 cm-1处的新拉曼峰,这对应于Li+与氮空位之间相互作用形成的可逆中间物种。这项工作展示了使用一种简单的原位技术来深入了解器件运行过程中的纳米碳电极,并揭示掺杂氮原子对Li+嵌入的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验