基于队列研究的食管鳞状细胞癌风险预测模型的开发与验证

Development and Validation of a Risk Prediction Model for Esophageal Squamous Cell Carcinoma Using Cohort Studies.

作者信息

Wang Qiao-Li, Ness-Jensen Eivind, Santoni Giola, Xie Shao-Hua, Lagergren Jesper

机构信息

1Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; 2HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway; 3Medical Department, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway; 4School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom.

出版信息

Am J Gastroenterol. 2021 Apr;116(4):683-691. doi: 10.14309/ajg.0000000000001094.

Abstract

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) carries a poor prognosis, but earlier tumor detection would improve survival. We aimed to develop and externally validate a risk prediction model based on exposure to readily available risk factors to identify high-risk individuals of ESCC.

METHODS

Competing risk regression modeling was used to develop a risk prediction model. Individuals' absolute risk of ESCC during follow-up was computed with the cumulative incidence function. We used prospectively collected data from the Nord-Trøndelag Health Study (HUNT) for model derivation and the UK Biobank cohort for validation. Candidate predictors were age, sex, tobacco smoking, alcohol consumption, body mass index (BMI), education, cohabitation, physical exercise, and employment. Model performance was validated internally and externally by evaluating model discrimination using the area under the receiver-operating characteristic curve (AUC) and model calibration.

RESULTS

The developed risk prediction model included age, sex, smoking, alcohol, and BMI. The AUC for 5-year risk of ESCC was 0.76 (95% confidence interval [CI], 0.58-0.93) in the derivation cohort and 0.70 (95% CI, 0.64-0.75) in the validation cohort. The calibration showed close agreement between the predicted cumulative risk and observed probabilities of developing ESCC. Higher net benefit was observed when applying the risk prediction model than considering all participants as being at high risk, indicating good clinical usefulness. A web tool for risk calculation was developed: https://sites.google.com/view/escc-ugis-ki.

DISCUSSION

This ESCC risk prediction model showed good discrimination and calibration and validated well in an independent cohort. This readily available model can help select high-risk individuals for preventive interventions.

摘要

引言

食管鳞状细胞癌(ESCC)预后较差,但早期肿瘤检测可提高生存率。我们旨在基于易于获得的风险因素开发并外部验证一种风险预测模型,以识别ESCC的高危个体。

方法

使用竞争风险回归模型开发风险预测模型。通过累积发病率函数计算个体随访期间ESCC的绝对风险。我们使用来自北特伦德拉格健康研究(HUNT)的前瞻性收集数据进行模型推导,并使用英国生物银行队列进行验证。候选预测因素包括年龄、性别、吸烟、饮酒、体重指数(BMI)、教育程度、同居情况、体育锻炼和就业情况。通过使用受试者工作特征曲线下面积(AUC)评估模型辨别力以及模型校准,在内部和外部验证模型性能。

结果

开发的风险预测模型包括年龄、性别、吸烟、饮酒和BMI。推导队列中ESCC 5年风险的AUC为0.76(95%置信区间[CI],0.58 - 0.93),验证队列中为0.70(95%CI,0.64 - 0.75)。校准显示预测的累积风险与观察到的发生ESCC的概率之间具有密切一致性。应用风险预测模型时观察到的净效益高于将所有参与者视为高危人群,表明具有良好的临床实用性。开发了一个风险计算网络工具:https://sites.google.com/view/escc-ugis-ki。

讨论

这种ESCC风险预测模型显示出良好的辨别力和校准能力,并且在独立队列中得到了很好的验证。这种易于获得的模型有助于选择高危个体进行预防性干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索