文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估 NoteAid 在社区医院环境中的有效性:一项针对电子健康记录笔记理解干预措施的随机试验,对象为患者。

Evaluating the Effectiveness of NoteAid in a Community Hospital Setting: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Patients.

机构信息

Department of Information Technology, Analytics, and Operations, Mendoza College of Business, University of Notre Dame, Notre Dame, IN, United States.

Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, United States.

出版信息

J Med Internet Res. 2021 May 13;23(5):e26354. doi: 10.2196/26354.


DOI:10.2196/26354
PMID:33983124
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8160802/
Abstract

BACKGROUND: Interventions to define medical jargon have been shown to improve electronic health record (EHR) note comprehension among crowdsourced participants on Amazon Mechanical Turk (AMT). However, AMT participants may not be representative of the general population or patients who are most at-risk for low health literacy. OBJECTIVE: In this work, we assessed the efficacy of an intervention (NoteAid) for EHR note comprehension among participants in a community hospital setting. METHODS: Participants were recruited from Lowell General Hospital (LGH), a community hospital in Massachusetts, to take the ComprehENotes test, a web-based test of EHR note comprehension. Participants were randomly assigned to control (n=85) or intervention (n=89) groups to take the test without or with NoteAid, respectively. For comparison, we used a sample of 200 participants recruited from AMT to take the ComprehENotes test (100 in the control group and 100 in the intervention group). RESULTS: A total of 174 participants were recruited from LGH, and 200 participants were recruited from AMT. Participants in both intervention groups (community hospital and AMT) scored significantly higher than participants in the control groups (P<.001). The average score for the community hospital participants was significantly lower than the average score for the AMT participants (P<.001), consistent with the lower education levels in the community hospital sample. Education level had a significant effect on scores for the community hospital participants (P<.001). CONCLUSIONS: Use of NoteAid was associated with significantly improved EHR note comprehension in both community hospital and AMT samples. Our results demonstrate the generalizability of ComprehENotes as a test of EHR note comprehension and the effectiveness of NoteAid for improving EHR note comprehension.

摘要

背景:干预措施来定义医学术语已被证明可以提高在亚马逊机械土耳其(AMT)众包参与者对电子健康记录(EHR)注释的理解。然而,AMT 参与者可能无法代表一般人群或最有可能患有低健康素养的患者。

目的:在这项工作中,我们评估了一种干预措施(NoteAid)对马萨诸塞州洛厄尔综合医院(LGH)社区医院参与者 EHR 注释理解的效果。

方法:参与者从洛厄尔综合医院(LGH)招募,参加基于网络的 EHR 注释理解 ComprehENotes 测试。参与者被随机分配到对照组(n=85)或干预组(n=89),分别在没有或有 NoteAid 的情况下参加测试。为了进行比较,我们使用了从 AMT 招募的 200 名参与者的样本参加 ComprehENotes 测试(对照组 100 名,干预组 100 名)。

结果:共有 174 名参与者从 LGH 招募,200 名参与者从 AMT 招募。干预组(社区医院和 AMT)的参与者得分均明显高于对照组(P<.001)。社区医院参与者的平均得分明显低于 AMT 参与者的平均得分(P<.001),这与社区医院样本中较低的教育水平一致。教育水平对社区医院参与者的分数有显著影响(P<.001)。

结论:使用 NoteAid 与社区医院和 AMT 样本中 EHR 注释理解的显著提高相关。我们的结果表明,ComprehENotes 作为 EHR 注释理解测试具有普遍性,并且 NoteAid 对提高 EHR 注释理解是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5910/8160802/bc9e7b0e2175/jmir_v23i5e26354_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5910/8160802/99d7cc727890/jmir_v23i5e26354_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5910/8160802/bc9e7b0e2175/jmir_v23i5e26354_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5910/8160802/99d7cc727890/jmir_v23i5e26354_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5910/8160802/bc9e7b0e2175/jmir_v23i5e26354_fig2.jpg

相似文献

[1]
Evaluating the Effectiveness of NoteAid in a Community Hospital Setting: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Patients.

J Med Internet Res. 2021-5-13

[2]
Improving Electronic Health Record Note Comprehension With NoteAid: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Crowdsourced Workers.

J Med Internet Res. 2019-1-16

[3]
Evaluating the efficacy of NoteAid on EHR note comprehension among US Veterans through Amazon Mechanical Turk.

Int J Med Inform. 2023-4

[4]
ComprehENotes, an Instrument to Assess Patient Reading Comprehension of Electronic Health Record Notes: Development and Validation.

J Med Internet Res. 2018-4-25

[5]
Improving patients' electronic health record comprehension with NoteAid.

Stud Health Technol Inform. 2013

[6]
A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.

J Med Internet Res. 2018-1-22

[7]
Evaluating Expert-Layperson Agreement in Identifying Jargon Terms in Electronic Health Record Notes: Observational Study.

J Med Internet Res. 2024-10-15

[8]
Readability Formulas and User Perceptions of Electronic Health Records Difficulty: A Corpus Study.

J Med Internet Res. 2017-3-2

[9]
The effectiveness of health literacy interventions on the informed consent process of health care users: a systematic review protocol.

JBI Database System Rev Implement Rep. 2015-10

[10]
Adult patient access to electronic health records.

Cochrane Database Syst Rev. 2021-2-26

引用本文的文献

[1]
Improving Clinical Documentation with Artificial Intelligence: A Systematic Review.

Perspect Health Inf Manag. 2024-6-1

[2]
Individual Factors That Affect Laypeople's Understanding of Definitions of Medical Jargon.

Health Policy Technol. 2024-12

[3]
Evaluating Expert-Layperson Agreement in Identifying Jargon Terms in Electronic Health Record Notes: Observational Study.

J Med Internet Res. 2024-10-15

[4]
MedJEx: A Medical Jargon Extraction Model with Wiki's Hyperlink Span and Contextualized Masked Language Model Score.

Proc Conf Empir Methods Nat Lang Process. 2022-12

[5]
Evaluation of Patient-Friendly Diagnosis Clarifications in a Hospital Patient Portal.

Appl Clin Inform. 2023-5

[6]
Evaluating the efficacy of NoteAid on EHR note comprehension among US Veterans through Amazon Mechanical Turk.

Int J Med Inform. 2023-4

本文引用的文献

[1]
Patients Evaluate Visit Notes Written by Their Clinicians: a Mixed Methods Investigation.

J Gen Intern Med. 2020-12

[2]
Care Partners and Patient Portals-Faulty Access, Threats to Privacy, and Ample Opportunity.

JAMA Intern Med. 2020-6-1

[3]
The Views and Experiences of Clinicians Sharing Medical Record Notes With Patients.

JAMA Netw Open. 2020-3-2

[4]
Mechanical Turk data collection in addiction research: utility, concerns and best practices.

Addiction. 2020-10

[5]
Adolescents' and Young Adults' Satisfaction with and Understanding of Medical Notes from a Pediatric Gastroenterology Practice: A Cross-Sectional Cohort Study.

J Pediatr. 2019-7-31

[6]
OpenNotes After 7 Years: Patient Experiences With Ongoing Access to Their Clinicians' Outpatient Visit Notes.

J Med Internet Res. 2019-5-6

[7]
Improving Electronic Health Record Note Comprehension With NoteAid: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Crowdsourced Workers.

J Med Internet Res. 2019-1-16

[8]
Correlation Between eHealth Literacy and Health Literacy Using the eHealth Literacy Scale and Real-Life Experiences in the Health Sector as a Proxy Measure of Functional Health Literacy: Cross-Sectional Web-Based Survey.

J Med Internet Res. 2018-10-31

[9]
Self-reported and objectively assessed knowledge of evidence-based practice terminology among healthcare students: A cross-sectional study.

PLoS One. 2018-7-12

[10]
ComprehENotes, an Instrument to Assess Patient Reading Comprehension of Electronic Health Record Notes: Development and Validation.

J Med Internet Res. 2018-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索