Suppr超能文献

pSONIC:通过共线性识别的倍性感知同源同线性网络。

pSONIC: Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity.

机构信息

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.

Biology Department, Colorado State University, Fort Collins, CO 80521, USA.

出版信息

G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab170.

Abstract

With the rapid rise in availability of high-quality genomes for closely related species, methods for orthology inference that incorporate synteny are increasingly useful. Polyploidy perturbs the 1:1 expected frequencies of orthologs between two species, complicating the identification of orthologs. Here we present a method of ortholog inference, Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity (pSONIC). We demonstrate the utility of pSONIC using four species in the cotton tribe (Gossypieae), including one allopolyploid, and place between 75% and 90% of genes from each species into nearly 32,000 orthologous groups, 97% of which consist of at most singletons or tandemly duplicated genes-58.8% more than comparable methods that do not incorporate synteny. We show that 99% of singleton gene groups follow the expected tree topology and that our ploidy-aware algorithm recovers 97.5% identical groups when compared to splitting the allopolyploid into its two respective subgenomes, treating each as separate "species."

摘要

随着高质量近缘物种基因组可用性的迅速增加,结合基因共线性的同源基因推断方法越来越有用。多倍体打乱了两个物种之间预期的 1:1 同源基因频率,使同源基因的鉴定变得复杂。在这里,我们提出了一种同源基因推断方法,即通过共线性识别的多倍体感知共线性同源基因网络(pSONIC)。我们使用棉花族(棉属)中的四个物种(包括一个异源多倍体)来演示 pSONIC 的实用性,并将每个物种的基因中的 75%到 90%放入近 32000 个直系同源基因群中,其中 97%由最多单基因或串联重复基因组成——比不结合基因共线性的可比方法多 58.8%。我们表明,99%的单基因群遵循预期的树拓扑结构,并且当我们将异源多倍体分成两个各自的亚基因组,将每个亚基因组视为单独的“物种”时,我们的多倍体感知算法会恢复 97.5%相同的基因群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efc4/8496325/af3245888a0a/jkab170f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验