Suppr超能文献

利用卡尔曼滤波的软投票集成分类器预测青光眼的快速进展阶段。

Predicting rapid progression phases in glaucoma using a soft voting ensemble classifier exploiting Kalman filtering.

机构信息

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Kellogg Eye Institute, Ann Arbor, MI, 48105, USA.

出版信息

Health Care Manag Sci. 2021 Dec;24(4):686-701. doi: 10.1007/s10729-021-09564-2. Epub 2021 May 13.

Abstract

In managing patients with chronic diseases, such as open angle glaucoma (OAG), the case treated in this paper, medical tests capture the disease phase (e.g. regression, stability, progression, etc.) the patient is currently in. When medical tests have low residual variability (e.g. empirical difference between the patient's true and recorded value is small) they can effectively, without the use of sophisticated methods, identify the patient's current disease phase; however, when medical tests have moderate to high residual variability this may not be the case. This paper presents a framework for handling the latter case. The framework presented integrates the outputs of interacting multiple model Kalman filtering with supervised learning classification. The purpose of this integration is to estimate the true values of patients' disease metrics by allowing for rapid and non-rapid phases; and dynamically adapting to changes in these values over time. We apply our framework to classifying whether a patient with OAG will experience rapid progression over the next two or three years from the time of classification. The performance (AUC) of our model increased by approximately 7% (increased from 0.752 to 0.819) when the Kalman filtering results were incorporated as additional features in the supervised learning model. These results suggest the combination of filters and statistical learning methods in clinical health has significant benefits. Although this paper applies our methodology to OAG, the methodology developed is applicable to other chronic conditions.

摘要

在管理慢性疾病患者(如开角型青光眼 (OAG))时,本文所处理的病例,医疗测试会捕捉到患者当前所处的疾病阶段(例如,消退、稳定、进展等)。当医疗测试的剩余变异度较低(例如,患者真实值和记录值之间的经验差异较小)时,它们可以有效地、无需使用复杂的方法来识别患者当前的疾病阶段;然而,当医疗测试具有中等至高度的剩余变异度时,情况可能并非如此。本文提出了一种处理后者情况的框架。该框架集成了交互多模型卡尔曼滤波的输出和监督学习分类。这种集成的目的是通过允许快速和非快速阶段来估计患者疾病指标的真实值;并随着时间的推移动态适应这些值的变化。我们将我们的框架应用于分类患有 OAG 的患者在分类后的接下来两到三年内是否会经历快速进展。当将卡尔曼滤波结果作为监督学习模型的附加特征时,我们的模型的性能(AUC)提高了约 7%(从 0.752 提高到 0.819)。尽管本文将我们的方法应用于 OAG,但所开发的方法适用于其他慢性疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验