Suppr超能文献

使用过滤预测技术为开角型青光眼患者确定个性化监测方案。

Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma.

作者信息

Schell Greggory J, Lavieri Mariel S, Helm Jonathan E, Liu Xiang, Musch David C, Van Oyen Mark P, Stein Joshua D

机构信息

Department of Industrial and Operations Engineering, University of Michigan School of Engineering, Ann Arbor, Michigan.

Department of Operations and Decision Technologies, Indiana University Kelley School of Business, Bloomington, Indiana.

出版信息

Ophthalmology. 2014 Aug;121(8):1539-46. doi: 10.1016/j.ophtha.2014.02.021. Epub 2014 Apr 4.

Abstract

PURPOSE

To determine whether dynamic and personalized schedules of visual field (VF) testing and intraocular pressure (IOP) measurements result in an improvement in disease progression detection compared with fixed interval schedules for performing these tests when evaluating patients with open-angle glaucoma (OAG).

DESIGN

Secondary analyses using longitudinal data from 2 randomized controlled trials.

PARTICIPANTS

A total of 571 participants from the Advanced Glaucoma Intervention Study (AGIS) and the Collaborative Initial Glaucoma Treatment Study (CIGTS).

METHODS

Perimetric and tonometric data were obtained for AGIS and CIGTS trial participants and used to parameterize and validate a Kalman filter model. The Kalman filter updates knowledge about each participant's disease dynamics as additional VF tests and IOP measurements are obtained. After incorporating the most recent VF and IOP measurements, the model forecasts each participant's disease dynamics into the future and characterizes the forecasting error. To determine personalized schedules for future VF tests and IOP measurements, we developed an algorithm by combining the Kalman filter for state estimation with the predictive power of logistic regression to identify OAG progression. The algorithm was compared with 1-, 1.5-, and 2-year fixed interval schedules of obtaining VF and IOP measurements.

MAIN OUTCOME MEASURES

Length of diagnostic delay in detecting OAG progression, efficiency of detecting progression, and number of VF and IOP measurements needed to assess for progression.

RESULTS

Participants were followed in the AGIS and CIGTS trials for a mean (standard deviation) of 6.5 (2.8) years. Our forecasting model achieved a 29% increased efficiency in identifying OAG progression (P<0.0001) and detected OAG progression 57% sooner (reduced diagnostic delay) (P = 0.02) than following a fixed yearly monitoring schedule, without increasing the number of VF tests and IOP measurements required. The model performed well for patients with mild and advanced disease. The model performed significantly more testing of patients who exhibited OAG progression than nonprogressing patients (1.3 vs. 1.0 tests per year; P<0.0001).

CONCLUSIONS

Use of dynamic and personalized testing schedules can enhance the efficiency of OAG progression detection and reduce diagnostic delay compared with yearly fixed monitoring intervals. If further validation studies confirm these findings, such algorithms may be able to greatly enhance OAG management.

摘要

目的

在评估开角型青光眼(OAG)患者时,确定与进行这些检查的固定间隔时间表相比,动态个性化的视野(VF)测试和眼压(IOP)测量时间表是否能改善疾病进展检测情况。

设计

对两项随机对照试验的纵向数据进行二次分析。

参与者

来自高级青光眼干预研究(AGIS)和协作性初始青光眼治疗研究(CIGTS)的571名参与者。

方法

获取AGIS和CIGTS试验参与者的视野和眼压数据,用于参数化和验证卡尔曼滤波模型。随着获得更多的VF测试和IOP测量结果,卡尔曼滤波会更新有关每个参与者疾病动态的知识。纳入最新的VF和IOP测量结果后,该模型预测每个参与者未来的疾病动态并表征预测误差。为了确定未来VF测试和IOP测量的个性化时间表,我们通过将用于状态估计的卡尔曼滤波与逻辑回归的预测能力相结合,开发了一种算法来识别OAG进展。将该算法与获取VF和IOP测量的1年、1.5年和2年固定间隔时间表进行比较。

主要观察指标

检测OAG进展的诊断延迟时长、检测进展的效率以及评估进展所需的VF和IOP测量次数。

结果

在AGIS和CIGTS试验中,参与者的平均(标准差)随访时间为6.5(2.8)年。我们的预测模型在识别OAG进展方面效率提高了29%(P<0.0001),并且比遵循固定的年度监测时间表提前57%检测到OAG进展(减少诊断延迟)(P = 0.02),同时没有增加所需的VF测试和IOP测量次数。该模型对轻度和重度疾病患者均表现良好。与未进展的患者相比,该模型对表现出OAG进展的患者进行的测试显著更多(每年1.3次对1.0次测试;P<0.0001)。

结论

与每年固定的监测间隔相比,使用动态个性化测试时间表可以提高OAG进展检测的效率并减少诊断延迟。如果进一步的验证研究证实这些发现,此类算法可能能够极大地改善OAG的管理。

相似文献

8
The Effect of Achieving Target Intraocular Pressure on Visual Field Worsening.目标眼压达标对视野恶化的影响。
Ophthalmology. 2022 Jan;129(1):35-44. doi: 10.1016/j.ophtha.2021.08.025. Epub 2021 Sep 8.
9
Visual field improvement in the collaborative initial glaucoma treatment study.联合初始青光眼治疗研究中的视野改善。
Am J Ophthalmol. 2014 Jul;158(1):96-104.e2. doi: 10.1016/j.ajo.2014.04.003. Epub 2014 Apr 12.

引用本文的文献

1
Advancement in Understanding Glaucoma: A Comprehensive Review.青光眼认识的进展:全面综述
Cureus. 2023 Sep 30;15(9):e46254. doi: 10.7759/cureus.46254. eCollection 2023 Sep.
2
Visual Field Prediction: Evaluating the Clinical Relevance of Deep Learning Models.视野预测:评估深度学习模型的临床相关性
Ophthalmol Sci. 2022 Sep 13;3(1):100222. doi: 10.1016/j.xops.2022.100222. eCollection 2023 Mar.
5
Current and Future Implications of Using Artificial Intelligence in Glaucoma Care.人工智能在青光眼护理中的当前及未来影响
J Curr Ophthalmol. 2022 Jul 26;34(2):129-132. doi: 10.4103/joco.joco_39_22. eCollection 2022 Apr-Jun.
6
Functional assessment of glaucoma: Uncovering progression.青光眼的功能评估:揭示进展。
Surv Ophthalmol. 2020 Nov-Dec;65(6):639-661. doi: 10.1016/j.survophthal.2020.04.004. Epub 2020 Apr 26.
8
Forecasting future Humphrey Visual Fields using deep learning.利用深度学习预测未来 Humphrey 视野。
PLoS One. 2019 Apr 5;14(4):e0214875. doi: 10.1371/journal.pone.0214875. eCollection 2019.

本文引用的文献

1
Diagnostic tools for calculation of glaucoma risk.青光眼风险计算的诊断工具。
Surv Ophthalmol. 2008 Nov;53 Suppl1(SUPPL1):S11-6. doi: 10.1016/j.survophthal.2008.08.005.
7
Patterns of care for open-angle glaucoma in managed care.管理式医疗中开角型青光眼的护理模式
Arch Ophthalmol. 2003 Jun;121(6):777-83. doi: 10.1001/archopht.121.6.777.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验