Suppr超能文献

具有同时优异声学和机械能吸收性能的微晶格超材料。

Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.

作者信息

Li Xinwei, Yu Xiang, Chua Jun Wei, Lee Heow Pueh, Ding Jun, Zhai Wei

机构信息

Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore.

Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore.

出版信息

Small. 2021 Jun;17(24):e2100336. doi: 10.1002/smll.202100336. Epub 2021 May 13.

Abstract

The advent of 3D printing brought about the possibilities of microlattice metamaterials as advanced materials with the potentials to surpass the functionalities of traditional materials. Sound absorbing materials which are also tough and lightweight are of particular importance as practical engineering materials. There are however a lack of attempts on the study of metamaterials multifunctional for both purposes. Herein, we present four types of face-centered cubic based plate and truss microlattices as novel metamaterials with simultaneous excellent sound and mechanical energy absorption performance. High sound absorption coefficients nearing 1 and high specific energy absorption of 50.3 J g have been measured. Sound absorption mechanisms of microlattices are proposed to be based on a "cascading resonant cells theory", an extension of the Helmholtz resonance principle that we have conceptualized herein. Characteristics of absorption coefficients are found to be essentially geometry limited by the pore and cavity morphologies. The excellent mechanical properties in turn derive from both the approximate membrane stress state of the plate architecture and the excellent ductility and strength of the base material. Overall, this work presents a new concept on the specific structural design and materials selection for architectured metamaterials with dual sound and mechanical energy absorption capabilities.

摘要

3D打印技术的出现为微晶格超材料带来了可能性,这类先进材料有潜力超越传统材料的功能。兼具高强度和轻质特性的吸声材料作为实用工程材料尤为重要。然而,目前缺乏针对兼具这两种功能的超材料的研究尝试。在此,我们展示了四种基于面心立方的平板和桁架微晶格,作为同时具有优异吸声和机械能吸收性能的新型超材料。已测得接近1的高吸声系数和50.3 J/g的高比能吸收。微晶格的吸声机制被认为基于“级联共振单元理论”,这是我们在此概念化的亥姆霍兹共振原理的扩展。发现吸收系数的特性本质上受孔隙和腔体形态的几何结构限制。优异的机械性能反过来源于平板结构近似的薄膜应力状态以及基材优异的延展性和强度。总体而言,这项工作为具有双重吸声和机械能吸收能力的结构化超材料的特定结构设计和材料选择提出了一个新概念。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验