Laboratory of Molecular Basis of Behavior, Nencki Institute of Polish Academy of Sciences, 3 Pasteur St., Warsaw, 02-093, Poland; Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna St., Krakow, 31-343, Poland.
Laboratory of Molecular Basis of Behavior, Nencki Institute of Polish Academy of Sciences, 3 Pasteur St., Warsaw, 02-093, Poland.
Brain Res Bull. 2021 Aug;173:28-36. doi: 10.1016/j.brainresbull.2021.04.019. Epub 2021 May 11.
Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.
海马体中谷氨酸能突触的可塑性被认为是学习和记忆过程的基础。令人惊讶的是,很少有研究报道行为训练诱导的突触的持久结构变化。因此,尚不清楚海马体中的哪些突触变化有助于记忆存储。在这里,我们通过电子显微镜系统地比较了长时程增强(LTP)(突触可塑性的主要形式和记忆的细胞模型)和行为训练如何影响突触传递的长期增强(LTP)(突触可塑性的主要形式和记忆的细胞模型)以及行为训练如何影响突触传递的长期增强(LTP)(突触可塑性的主要形式和记忆的细胞模型)以及行为训练如何影响突触传递的长期增强(LTP)(突触可塑性的主要形式和记忆的细胞模型)在超微结构水平上对海马体谷氨酸能突触的影响。文献综述表明,虽然 LTP 诱导树突棘和突触后密度(PSD)的生长,PSD 代表谷氨酸能突触的突触后部分,但在行为训练后,会出现短暂的(<6 小时)突触发生和长期的(>24 小时)PSD 体积增加(树突棘体积没有明显变化),这表明训练诱导的 PSD 生长可能反映了突触功能的长期增强。此外,多神经支配棘(MIS)的形成与老年小鼠和 LTP 缺陷突变体小鼠的长期记忆有关。由于只有电子显微镜才能可靠地观察到 PSD 的体积和非典型突触,我们认为需要进行超微结构水平的分析,以揭示与大脑中信息的长期存储相关的突触变化。