Suppr超能文献

基于神经网络的混合优化算法及其在波前整形中的应用。

Hybrid optimization algorithm based on neural networks and its application in wavefront shaping.

作者信息

Liu Kaige, Zhang Hengkang, Zhang Bin, Liu Qiang

出版信息

Opt Express. 2021 May 10;29(10):15517-15527. doi: 10.1364/OE.424002.

Abstract

The scattering effect of turbid media can lead to optical wavefront distortion. Focusing light through turbid media can be achieved using wavefront shaping techniques. Intelligent optimization algorithms and neural network algorithms are two powerful types of algorithms in the field of wavefront shaping but have their advantages and disadvantages. In this paper, we propose a new hybrid algorithm that combines the particle swarm optimization algorithm (PSO) and single-layer neural network (SLNN) to achieve the complementary advantages of both. A small number of training sets are used to train the SLNN to obtain preliminary focusing results, after which the PSO continues to optimize to the global optimum. The hybrid algorithm achieves faster convergence and higher enhancement than the PSO, while reducing the size of training samples required for SLNN training. SLNN trained with 1700 training sets can speed up the convergence of the PSO by about 50% and boost the final enhancement by about 24%. This hybrid algorithm will be of great significance in fields such as biomedicine and particle manipulation.

摘要

浑浊介质的散射效应会导致光波前畸变。利用波前整形技术可以实现光通过浑浊介质的聚焦。智能优化算法和神经网络算法是波前整形领域中两种强大的算法类型,但它们各有优缺点。在本文中,我们提出了一种新的混合算法,该算法将粒子群优化算法(PSO)和单层神经网络(SLNN)相结合,以实现两者的互补优势。使用少量训练集对SLNN进行训练以获得初步聚焦结果,之后PSO继续优化至全局最优。该混合算法比PSO实现了更快的收敛速度和更高的增强效果,同时减少了SLNN训练所需训练样本的数量。用1700个训练集训练的SLNN可以使PSO的收敛速度加快约50%,并使最终增强效果提高约24%。这种混合算法在生物医学和粒子操纵等领域将具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验