Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China.
Center of Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia.
Autophagy. 2021 Dec;17(12):4305-4322. doi: 10.1080/15548627.2021.1911018. Epub 2021 May 14.
ULK1 (unc-51 like autophagy activating kinase) has a central role in initiating macroautophagy/autophagy, a process that contributes to atherosclerosis and neointima hyperplasia, or excessive tissue growth that leads to vessel dysfunction. However, the role of ULK1 in neointima formation remains unclear. We aimed to determine how deletion affected neointima formation and to investigate the underlying mechanisms. We measured autophagy activity, vascular smooth muscle cell (VSMC) migration and neointima hyperplasia in cultured VSMCs and ligation-injured mouse carotid arteries from male wild-type (WT, C57BL/6 J) and VSMC-specific knockout ( KO) mice. Carotid artery ligation in WT mice increased ULK1 protein expression, and concurrently increased autophagic flux and neointima formation. Treating human aortic smooth muscle cells (HASMCs) with PDGF (platelet derived growth factor) increased ULK1 expression, activated autophagy, and promoted cell migration. Further, smooth muscle cell-specific deletion of suppressed autophagy, inhibited VSMC migration, and impeded neointima hyperplasia. Mechanistically, deletion inhibited autophagic degradation of histone acetyltransferase protein KAT2A/GCN5 (K[lysine] acetyltransferase 2A), resulting in accumulation of KAT2A that directly acetylated TUBA/α-tubulin and subsequently increased protein levels of acetylated TUBA. The acetylation of TUBA increased microtubule stability and inhibited VSMC directional migration and neointima formation. Finally, local transfection of siRNA decreased TUBA acetylation and prevented the attenuation of vascular injury-induced neointima formation in KO mice. These findings suggest that deletion inhibits neointima formation by reducing autophagic degradation of KAT2A and increasing TUBA acetylation in VSMCs. ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ATAT1: alpha tubulin acetyltransferase 1; ATG: autophagy related; BECN1: beclin 1; BP: blood pressure; CAL: carotid artery ligation; CQ: chloroquine diphosphate; EC: endothelial cells; EEL: external elastic layer; FBS: fetal bovine serum; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; HASMCs: human aortic smooth muscle cells; HAT1: histone acetyltransferase 1; HDAC: histone deacetylase; IEL: inner elastic layer; IP: immunoprecipitation; KAT2A/GCN5: K(lysine) acetyltransferase 2A; KAT8/hMOF: lysine acetyltransferase 8; MAP1LC3: microtubule associated protein 1 light chain 3; MYH11: myosin heavy chain 11; PBS: phosphate-buffered saline; PDGF: platelet derived growth factor; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; RAC3: Rac family small GTPase 3; SIRT2: sirtuin 2; SPP1/OPN: secreted phosphoprotein 1; SQSTM1/p62: sequestosome 1; TAGLN/SM22: transgelin; TUBA: tubulin alpha; ULK1: unc-51 like autophagy activating kinase; VSMC: vascular smooth muscle cell; VVG: Verhoeff Van Gieson; WT: wild type.
ULK1(与自噬激活激酶 UNC-51 同源)在启动大自噬/自噬过程中起着核心作用,该过程有助于动脉粥样硬化和新生内膜增生,或导致血管功能障碍的过度组织生长。然而,ULK1 在新生内膜形成中的作用仍不清楚。我们旨在确定缺失如何影响新生内膜形成,并研究潜在的机制。我们测量了培养的血管平滑肌细胞(VSMC)和结扎损伤的雄性野生型(WT,C57BL/6J)和血管平滑肌细胞特异性 缺失(KO)小鼠颈动脉中的自噬活性、血管平滑肌细胞迁移和新生内膜增生。WT 小鼠颈动脉结扎增加了 ULK1 蛋白表达,同时增加了自噬通量和新生内膜形成。用血小板衍生生长因子(PDGF)处理人主动脉平滑肌细胞(HASMCs)增加了 ULK1 表达,激活了自噬,并促进了细胞迁移。此外,平滑肌细胞特异性缺失 抑制了自噬,抑制了 VSMC 迁移,并阻碍了新生内膜增生。从机制上讲,缺失抑制了组蛋白乙酰转移酶蛋白 KAT2A/GCN5(赖氨酸乙酰转移酶 2A)的自噬降解,导致 KAT2A 积累,直接乙酰化 TUBA/α-微管蛋白,并随后增加乙酰化 TUBA 的蛋白水平。TUBA 的乙酰化增加了微管的稳定性,并抑制了 VSMC 的定向迁移和新生内膜形成。最后,局部转染 siRNA 减少了 TUBA 乙酰化,并防止了 KO 小鼠血管损伤诱导的新生内膜形成的减弱。这些发现表明,缺失通过减少 KAT2A 的自噬降解并增加 VSMCs 中的 TUBA 乙酰化来抑制新生内膜形成。ACTA2/α-SMA:血管平滑肌,主动脉;ACTB:肌动蛋白β;ATAT1:α 微管蛋白乙酰转移酶 1;ATG:自噬相关;BECN1:beclin 1;BP:血压;CAL:颈动脉结扎;CQ:氯喹二磷酸盐;EC:内皮细胞;EEL:外弹性层;FBS:胎牛血清;GAPDH:甘油醛 3-磷酸脱氢酶;HASMCs:人主动脉平滑肌细胞;HAT1:组蛋白乙酰转移酶 1;HDAC:组蛋白去乙酰化酶;IEL:内弹性层;IP:免疫沉淀;KAT2A/GCN5:赖氨酸乙酰转移酶 2A;KAT8/hMOF:赖氨酸乙酰转移酶 8;MAP1LC3:微管相关蛋白 1 轻链 3;MYH11:肌球蛋白重链 11;PBS:磷酸盐缓冲盐水;PDGF:血小板衍生生长因子;PECAM1/CD31:血小板和内皮细胞黏附分子 1;RAC3:Rac 家族小 GTP 酶 3;SIRT2:sirtuin 2;SPP1/OPN:分泌磷蛋白 1;SQSTM1/p62:自噬体相关蛋白 1;TAGLN/SM22:转凝胶;TUBA:微管蛋白α;ULK1:与自噬激活激酶 UNC-51 同源;VSMC:血管平滑肌细胞;VVG:Verhoeff Van Gieson;WT:野生型。