Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel.
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, 6020, Innsbruck, Austria.
Sci Rep. 2021 May 13;11(1):10189. doi: 10.1038/s41598-021-89519-3.
We show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.
我们展示了如何将香农熵函数用作基础,建立复杂度度量,以衡量国家的经济效率和产品专业化,而不仅仅是多样化。这个熵函数保证了存在一个固定点,通过一个迭代方案可以快速达到这个固定点,该方案收敛到我们的自洽度量。如果将产品划分为更大的类别,我们的方法可以自然地将国家竞争力度量分解为部门间和部门内的贡献。除了概述该方法的技术特点和优势外,我们还描述了从获得的排名分析中得出的广泛结果,并将这些观察结果与其他经济参数建立的结果进行基准测试。这些比较允许将国家和产品划分为各种主要类型,具有明显的特征。我们的方法在双节点网络中的一般排序问题中有广泛的适用性。