Department of Applied Mathematics, Rey Juan Carlos University, Madrid, Spain.
Institut de Matemàtica Multidisciplinària, Universitat Politècnica de València, Valencia, Spain.
Chaos. 2013 Dec;23(4):043114. doi: 10.1063/1.4826446.
In this paper, we show a new technique to analyze families of rankings. In particular, we focus on sports rankings and, more precisely, on soccer leagues. We consider that two teams compete when they change their relative positions in consecutive rankings. This allows to define a graph by linking teams that compete. We show how to use some structural properties of this competitivity graph to measure to what extend the teams in a league compete. These structural properties are the mean degree, the mean strength, and the clustering coefficient. We give a generalization of the Kendall's correlation coefficient to more than two rankings. We also show how to make a dynamic analysis of a league and how to compare different leagues. We apply this technique to analyze the four major European soccer leagues: Bundesliga, Italian Lega, Spanish Liga, and Premier League. We compare our results with the classical analysis of sport ranking based on measures of competitive balance.
在本文中,我们展示了一种分析排名族的新方法。具体来说,我们专注于体育排名,更准确地说,是足球联赛。我们认为,当两支队伍在连续的排名中改变相对位置时,它们就会相互竞争。这允许通过链接竞争的队伍来定义一个图。我们展示了如何利用这种竞争图的一些结构属性来衡量联赛中队伍的竞争程度。这些结构属性是平均度数、平均强度和聚类系数。我们还将肯德尔相关系数推广到了两个以上的排名。我们还展示了如何对一个联赛进行动态分析以及如何比较不同的联赛。我们将该技术应用于分析四大欧洲足球联赛:德甲、意甲、西甲和英超。我们将我们的结果与基于竞争平衡度量的经典体育排名分析进行了比较。