Ramkumar T K, Malik Manzoor Ahmad, Ganaie Bilal Ahmad, Bhat Aashiq Hussain
National Atmospheric Research Laboratory, DOS, Govt. of India, Gadanki, Andhra Pradesh, 517112, India.
Department of Physics, University of Kashmir, Jammu and Kashmir, Srinagar, 190006, India.
Sci Rep. 2021 May 13;11(1):10168. doi: 10.1038/s41598-021-89694-3.
As a joint research collaboration between the National Atmospheric Research Laboratory (NARL), and the University of Kashmir (KU), NARL installed an all-sky airglow CCD imager (with centre wavelengths of 630 nm, 557.7 nm [2 nm band widths] and 840 nm [150 nm wide band with blocking notch at 866 nm to avoid the contamination of molecular oxygen emissions]) in the University campus in Srinagar (75°E, 34°N, geographic), Jammu and Kashmir, India (western Himalayan region). To understand the upper atmospheric dynamics and ionospheric electrodynamics and their associated physical coupling mechanisms, the imager observes airglow emissions of OH molecules (~ 85 km height; 840 nm) and atomic oxygen occurring at the heights of ~ 97 km (557.7 nm) and ~ 250 km (630 nm). Airglow observations in Kashmir commenced in the night of August 11, 2017 and the present work reports on the characteristics of first-time observation of Medium Scale Travelling Ionospheric Disturbances (MSTIDs with horizontal wavelengths of ~ 100-300 km) over Kashmir region during 20:30-22:30 IST (Indian standard time) on August 15, 2017 (India independence day). Initially, the phase front of MSTIDs was aligned along the north-west and south-east direction and moved at ~ 57 m/s towards the south-west direction and finally the westward direction by aligning along the meridian before they disappeared. Along with SAMI-3 ionospheric model simulations, simultaneous multiwavelength airglow observations indicate that secondary gravity waves generated due to dissipation of upward propagating mesospheric gravity waves in the heights of ~ 85-95 km would have contributed to the generation of MSTIDs in the F region ionospheric plasma through electrodynamical coupling between the E and F region (Perkins instability) ionosphere.
作为国家大气研究实验室(NARL)与克什米尔大学(KU)的联合研究合作项目,NARL在印度查谟和克什米尔地区斯利那加市(地理坐标为东经75°、北纬34°,位于喜马拉雅山脉西部)的大学校园内安装了一台全天空气辉电荷耦合器件成像仪(中心波长分别为630纳米、557.7纳米[带宽2纳米]和840纳米[宽带150纳米,在866纳米处有阻挡凹槽以避免分子氧发射的污染])。为了解高层大气动力学和电离层电动力学及其相关的物理耦合机制,该成像仪观测了OH分子(高度约85千米;840纳米)以及分别在约97千米(557.7纳米)和约250千米(630纳米)高度处出现的原子氧的气辉发射。克什米尔地区的气辉观测于2017年8月11日夜间开始,本研究报告了2017年8月15日(印度独立日)印度标准时间20:30 - 22:30期间在克什米尔地区首次观测到的中尺度行进电离层扰动(MSTIDs,水平波长约为100 - 300千米)的特征。最初,MSTIDs的波前沿西北和东南方向排列,以约57米/秒的速度向西南方向移动,最终在消失前沿子午线排列并向西移动。结合SAMI - 3电离层模型模拟,同步多波长气辉观测表明,在约85 - 95千米高度处向上传播的中层大气重力波耗散产生的次级重力波,可能通过E区和F区(珀金斯不稳定性)电离层之间的电动力学耦合,促成了F区电离层等离子体中MSTIDs的产生。