Suppr超能文献

结直肠癌演化建模。

Modeling colorectal cancer evolution.

机构信息

Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.

出版信息

J Hum Genet. 2021 Sep;66(9):869-878. doi: 10.1038/s10038-021-00930-0. Epub 2021 May 13.

Abstract

Understanding cancer evolution provides a clue to tackle therapeutic difficulties in colorectal cancer. In this review, together with related works, we will introduce a series of our studies, in which we constructed an evolutionary model of colorectal cancer by combining genomic analysis and mathematical modeling. In our model, multiple subclones were generated by driver mutation acquisition and subsequent clonal expansion in early-stage tumors. Among the subclones, the one obtaining driver copy number alterations is endowed with malignant potentials to constitute a late-stage tumor in which extensive intratumor heterogeneity is generated by the accumulation of neutral mutations. We will also discuss how to translate our understanding of cancer evolution to a solution to the problem related to therapeutic resistance: mathematical modeling suggests that relapse caused by acquired resistance could be suppressed by utilizing clonal competition between sensitive and resistant clones. Considering the current rate of technological development, modeling cancer evolution by combining genomic analysis and mathematical modeling will be an increasingly important approach for understanding and overcoming cancer.

摘要

了解癌症进化为解决结直肠癌治疗中的困难提供了线索。在这篇综述中,我们将结合相关工作,介绍一系列研究成果,通过整合基因组分析和数学建模,构建了结直肠癌的进化模型。在我们的模型中,早期肿瘤中驱动突变的获得和随后的克隆扩张产生了多个亚克隆。在这些亚克隆中,获得驱动拷贝数改变的亚克隆具有恶性潜能,构成晚期肿瘤,其中大量的肿瘤内异质性是由中性突变的积累产生的。我们还将讨论如何将我们对癌症进化的理解转化为解决治疗耐药性相关问题的方法:数学模型表明,利用敏感和耐药克隆之间的克隆竞争,可以抑制获得性耐药引起的复发。考虑到当前技术发展的速度,通过整合基因组分析和数学建模来模拟癌症进化将成为理解和克服癌症的一种越来越重要的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1680/8384629/31a9976a8ec0/10038_2021_930_Fig1_HTML.jpg

相似文献

1
Modeling colorectal cancer evolution.
J Hum Genet. 2021 Sep;66(9):869-878. doi: 10.1038/s10038-021-00930-0. Epub 2021 May 13.
2
Integrated Multiregional Analysis Proposing a New Model of Colorectal Cancer Evolution.
PLoS Genet. 2016 Feb 18;12(2):e1005778. doi: 10.1371/journal.pgen.1005778. eCollection 2016 Feb.
3
Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling.
Cancer Sci. 2018 Apr;109(4):884-892. doi: 10.1111/cas.13510. Epub 2018 Feb 28.
4
An enhanced genetic model of colorectal cancer progression history.
Genome Biol. 2019 Aug 15;20(1):168. doi: 10.1186/s13059-019-1782-4.
5
Modeling the Subclonal Evolution of Cancer Cell Populations.
Cancer Res. 2018 Feb 1;78(3):830-839. doi: 10.1158/0008-5472.CAN-17-1229. Epub 2017 Nov 29.
6
7
Subclonal Genomic Architectures of Primary and Metastatic Colorectal Cancer Based on Intratumoral Genetic Heterogeneity.
Clin Cancer Res. 2015 Oct 1;21(19):4461-72. doi: 10.1158/1078-0432.CCR-14-2413. Epub 2015 May 15.
8
Clonal evolution and expansion associated with therapy resistance and relapse of colorectal cancer.
Mutat Res Rev Mutat Res. 2022 Jul-Dec;790:108445. doi: 10.1016/j.mrrev.2022.108445. Epub 2022 Nov 9.
9
Intratumor heterogeneity: A new perspective on colorectal cancer research.
Cancer Med. 2020 Oct;9(20):7637-7645. doi: 10.1002/cam4.3323. Epub 2020 Aug 27.

引用本文的文献

1
Anti-EGFR Therapy in Metastatic Colorectal Cancer: Identifying, Tracking, and Overcoming Resistance.
Cancers (Basel). 2025 Aug 27;17(17):2804. doi: 10.3390/cancers17172804.
2
3
Unveiling acquired resistance to anti-EGFR therapies in colorectal cancer: a long and winding road.
Front Pharmacol. 2024 Apr 22;15:1398419. doi: 10.3389/fphar.2024.1398419. eCollection 2024.
4
5
Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools.
J Mol Evol. 2023 Aug;91(4):405-423. doi: 10.1007/s00239-023-10117-0. Epub 2023 May 29.
6
Gamma-Aminobutyric Acid Type A Receptor Subunit Pi is a potential chemoresistance regulator in colorectal cancer.
Mol Biol Rep. 2023 Apr;50(4):3167-3177. doi: 10.1007/s11033-023-08268-w. Epub 2023 Jan 25.

本文引用的文献

1
Intratumor heterogeneity reflects clinical disease course.
Nat Cancer. 2020 Jan;1(1):3-6. doi: 10.1038/s43018-019-0002-1.
2
Depressed Colorectal Cancer: A New Paradigm in Early Colorectal Cancer.
Clin Transl Gastroenterol. 2020 Dec;11(12):e00269. doi: 10.14309/ctg.0000000000000269.
3
Impaired tumor immune response in metastatic tumors is a selective pressure for neutral evolution in CRC cases.
PLoS Genet. 2021 Jan 21;17(1):e1009113. doi: 10.1371/journal.pgen.1009113. eCollection 2021 Jan.
4
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.
Nat Biotechnol. 2021 May;39(5):599-608. doi: 10.1038/s41587-020-00795-2. Epub 2021 Jan 18.
5
Spatially resolved transcriptomics and its applications in cancer.
Curr Opin Genet Dev. 2021 Feb;66:70-77. doi: 10.1016/j.gde.2020.12.002. Epub 2021 Jan 9.
6
Selection-driven tumor evolution with public goods leads to patterns of clonal expansion consistent with neutral growth.
iScience. 2020 Dec 7;24(1):101901. doi: 10.1016/j.isci.2020.101901. eCollection 2021 Jan 22.
7
Intermittent versus continuous androgen deprivation therapy for advanced prostate cancer.
Nat Rev Urol. 2020 Aug;17(8):469-481. doi: 10.1038/s41585-020-0335-7. Epub 2020 Jun 30.
8
The clonal evolution of metastatic colorectal cancer.
Sci Adv. 2020 Jun 10;6(24):eaay9691. doi: 10.1126/sciadv.aay9691. eCollection 2020 Jun.
9
Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases.
Nat Genet. 2020 Jul;52(7):692-700. doi: 10.1038/s41588-020-0633-2. Epub 2020 May 25.
10
Mapping the spreading routes of lymphatic metastases in human colorectal cancer.
Nat Commun. 2020 Apr 24;11(1):1993. doi: 10.1038/s41467-020-15886-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验