Suppr超能文献

TRUST4:从批量和单细胞 RNA-seq 数据重建免疫受体库。

TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data.

机构信息

Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.

Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Nat Methods. 2021 Jun;18(6):627-630. doi: 10.1038/s41592-021-01142-2. Epub 2021 May 13.

Abstract

We introduce the TRUST4 open-source algorithm for reconstruction of immune receptor repertoires in αβ/γδ T cells and B cells from RNA-sequencing (RNA-seq) data. Compared with competing methods, TRUST4 supports both FASTQ and BAM format and is faster and more sensitive in assembling longer-even full-length-receptor repertoires. TRUST4 can also call repertoire sequences from single-cell RNA-seq (scRNA-seq) data without V(D)J enrichment, and is compatible with both SMART-seq and 5' 10x Genomics platforms.

摘要

我们介绍了用于从 RNA 测序 (RNA-seq) 数据中重建 αβ/γδ T 细胞和 B 细胞中免疫受体库的 TRUST4 开源算法。与竞争方法相比,TRUST4 同时支持 FASTQ 和 BAM 格式,在组装更长的——甚至全长的受体库时速度更快、灵敏度更高。TRUST4 还可以从无需 V(D)J 富集的单细胞 RNA-seq (scRNA-seq) 数据中调用受体库序列,并且与 SMART-seq 和 5' 10x Genomics 平台兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdce/9328942/c25efff12410/nihms-1690340-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验